摘要:
A method for manufacturing a cylindrical stacked capacitor having a central spine for a DRAM using only one photo mask is provided. The invention uses sidewall spacers and selective etching techniques to form a low cost, simple to manufacture, high capacitance capacitor and DRAM cell. A substrate having source regions, drain regions and gate electrode structures is provided. An insulating layer with a contact opening is formed over the substrate surface. A first conductive layer and a first dielectric layer are formed over the insulating layer. The first dielectric layer and first conductive layer are etched forming a central spine over the contact opening. The etched first dielectric layer forms a dielectric cap over central spine. Dielectric spacers are formed on the sidewall of the central spine and the dielectric cap. The remaining portions of the first conductive layer are anisotropically etched using the dielectric spacers and the dielectric cap as a mask. Conductive spacers are formed on the sidewalls of the dielectric spacers. The dielectric cap and the dielectric spacers are selectively etched thereby forming a crown shaped storage node having a central spine. A capacitor dielectric layer and a top electrode are formed over the crown shaped storage node and the insulating layer forming a crown shaped capacitor.
摘要:
A method, and resultant structure, is described for fabricating a DRAM (Dynamic Random Access Memory) cell having a stack capacitor with a ladder storage node, connected to a MOS (Metal Oxide Semiconductor) transistor with source and drain regions, to form a DRAM cell. A bottom electrode is connected to and extends up from the source region of the transistor, and has a top surface with a central cavity, and side surfaces extending down from the top surface in a step-like manner. These step-like sides are formed by a repeated two-step process of removing a portion of the vertical walls of a photoresist mask and removing a portion of the top surface of a layer of polysilicon from which the bottom electrode is formed. There is a capacitor dielectric over the bottom electrode. A top electrode is formed over the capacitor dielectric.
摘要:
A method for manufacturing an array of stacked capacitor is described that utilizes the sidewall of the capacitor node contact to increase the capacitance on a dynamic random access memory (DRAM) cell. The area occupied by the stacked capacitor is also restricted to the area over the FET source/drain area, thereby providing for the further reduction of the cell size. The method using a single mask level to form node contact openings in a thick insulating layer over the source/drain areas used for the node contact. A doped polysilicon layer is deposited filling the node contact openings and conformally coating the substrate. The polysilicon layer is oxidized to the thick insulating layer but not in the node contact openings. The oxidized portion of the polysilicon layer and the thick insulating layer are removed concurrently in a wet etch leaving free standing pillar-shaped bottom electrodes that also serve as the node contacts. The array of pillar-shaped stacked capacitors are completed by forming a interelectrode dielectric layer on the bottom electrodes and then depositing and patterning another doped polysilicon to form the top electrodes.
摘要:
A method for forming a DRAM capacitor using HSG-Si includes forming a dielectric layer over a substrate. A portion of the dielectric layer is removed to expose a contact area on the substrate. A polysilicon layer is then formed over the dielectric layer and in the first trench. Then, a hemispherical-grained silicon (HSG-Si) layer is formed on the polysilicon layer using an initial phase HSG-Si process, thereby forming a large number of silicon grains on the polysilicon layer. Next, nitrogen atoms are implanted into the polysilicon layer using the HSG-Si layer as a mask to form nitrogen regions in the polysilicon layer. The HSG-Si layer is then removed and the polysilicon layer is thermally oxidized. The nitrogen regions function as an anti-oxidation mask so that polysilicon-oxide regions are formed between the nitrogen regions in the polysilicon layer. Afterwards, an etching process is performed using the polysilicon-oxide regions as a mask so that the nitrogen regions and portions of the polysilicon layer beneath the nitrogen regions are removed. This etching step forms second trenches in the polysilicon layer between the polysilicon-oxide regions, which are subsequently removed. After removing the polysilicon-oxide regions, the polysilicon layer is patterned and etched to form a bottom electrode of the capacitor of the dynamic random access memory. The capacitor dielectric and the top electrode of the capacitor are then formed using conventional methods.
摘要:
There is shown a method for fabricating a vertical DRAM cell which includes a field effect transistor having a gate electrode and source/drain elements and a capacitor. There is provided a pattern of field oxide isolation in a silicon substrate wherein there are a pattern of openings to the silicon substrate. A pattern is formed of bit lines and a pattern of lines of holes with a hole located within each of the openings to said silicon substrate which lines of holes and bit lines are perpendicular to one another and which the lines cross at the planned locations of the vertical DRAM cell at the pattern of openings to the silicon substrate. A gate dielectric is formed on the surfaces of the holes. A doped polysilicon layer is formed in and over the holes so that it covers the gate dielectric and the field oxide isolation. A silicon nitride layer is formed over the doped polysilicon layer. Patterning and etching is done to the silicon nitride layer and doped polysilicon layer to form the opening for the capacitor node contact to the buried source/drain of the vertical field effect transistor (switching device for the storage signal) and establish said gate electrode in the hole and word line pattern over the field oxide insulator. A silicon oxide spacer is formed over the sidewalls of the silicon nitride and doped polysilicon layer. A capacitor is formed in and over the hole to complete the vertical DRAM cell.
摘要:
An efficient method for manufacturing a comb-type capacitor for use as part of a DRAM cell in a silicon integrated circuit is described. A three toothed comb is created by first forming a central pedestal of polysilicon, providing oxide spacers on the vertical sides of said pedestal, coating said spacers with an additional layer of polysilicon, and then etching away said spacers thereby creating the comb structure. In addition to the comb, the method of the present invention also leads to the formation of a projecting rim of polysilicon that runs around all four sides of the capacitor structure, thereby further increasing its effective surface beyond that due to the comb.
摘要:
A DRAM having a high capacitance stacked capacitor is fabricated by forming gate structures in the device areas and lines over field oxide areas on a substrate. A first insulating layer is formed and patterned to leave the source/drain structures open in the device areas where electrical contact is desired to the stacked capacitors. A bottom electrode of the capacitor is now formed by depositing and patterning a second polysilicon layer and a second insulating layer. Next the second polysilicon layer is laterally etched so that portions of the second polysilicon layer are etched out underneath from the second insulating layer. A third polysilicon layer is formed on the vertical sidewalls of the second polysilicon layer. A capacitor dielectric layer is deposited over the substrate surface and patterned so that portions remain covering the second and third polysilicon layers. A top electrode is formed over the capacitor dielectric layer.
摘要:
A method, and resultant structure, is described for fabricating a DRAM (Dynamic Random Access Memory) cell having a stack capacitor with a ladder storage node, connected to a MOS (Metal Oxide Semiconductor) transistor with source and drain regions, to form a DRAM cell. A bottom electrode is connected to and extends up from the source region of the transistor, and has a top surface with a central cavity, and side surfaces extending down from the top surface in a step-like manner. These step-like sides are formed by a repeated two-step process of removing a portion of the vertical walls of a photoresist mask and removing a portion of the top surface of a layer of polysilicon from which the bottom electrode is formed. There is a capacitor dielectric over the bottom electrode. A top electrode is formed over the capacitor dielectric.
摘要:
A method for forming a DRAM capacitor using a HSG-Si includes forming a dielectric layer over a substrate. A polysilicon layer is formed over the dielectric layer, and a hemispherical-grained silicon (HSG-Si) layer is formed on the polysilicon layer using an initial phase HSG-Si process. The HSG-Si layer includes a large number of silicon grains spaced apart on the surface of the polysilicon layer with the area of the polysilicon layer's surface being left exposed. Next, oxygen is implanted into the polysilicon layer using the silicon grains as an implant mask, thereby forming oxygen regions in the polysilicon layer. The HSG-Si layer is removed and the oxygen regions are annealed to transform the atom regions into oxide regions. Afterwards, the polysilicon layer is etched using the oxide regions as an etching mask, thereby forming a large number of trenches in the polysilicon layer. The oxide regions and portions of the polysilicon layer are removed to form a storage node, which serves as a bottom electrode of the DRAM cell capacitor.
摘要:
The present invention provides a method of manufacturing a stacked capacitor having a double walled crown shape. The method begins by providing a field effect transistor adjacent to a field oxide region in a substrate. Next, a first insulating layer and a barrier layer is formed over the resultant surface. A node contact opening is then etched in the barrier layer and the first insulation layer exposing a source region of the transistor. A first conductive layer is formed in the node contact opening and covers the first silicon nitride layer. A masking block is then formed over at least the node contact hole. First conductive spacers are then formed on the sidewalls of the masking block. Nitride spacers are formed on the sidewalls of the first conductive spacers. Second conductive spacers are formed on the sidewalls of the nitride spacers. The first conductive layer is anisotropically etched using the cylinder block, first conductive spacers, and the dielectric spacers as a mask. The masking block and the nitride spacers are removed thereby forming a double wall crown shape bottom electrode. A capacitor dielectric layer and top plate are formed to complete the capacitor.