Abstract:
In one embodiment, a data packet message is provided which includes a routing header configured to accommodate both a deterministic source route and a probabilistic source route for encoding a nodal source route. The nodal source route is selectively encoded with one or both of a deterministic source route and a probabilistic source route based upon one or more predetermined criteria.
Abstract:
In one embodiment, a device in a network identifies one or more traffic classes used by one or more nodes in the network. The device determines routing requirements for a particular traffic class of the one or more traffic classes. The device generates a channel assignment that assigns the particular traffic class to a particular channel based on the routing requirements for the particular traffic class. The device provides the channel assignment to the one or more nodes. The one or more nodes use the channel assignment to route traffic of the particular traffic class within the network.
Abstract:
In one embodiment, a device that is protected against a power outage event in a network receives metrics used by a first node in the network to select a routing link to a second node in the network. The device stores the metrics used by the first node to select the routing link to the second node. The device selects a set of one or more of the metrics to provide to the first node during network formation after a power outage event in the network. The device provides the selected set of one or more of the metrics to the first node, wherein the first node uses the provided set to reestablish connectivity to the network.
Abstract:
In one embodiment, a device receives a router advertisement message after a power outage event in a network. The device joins the network, in response to receiving the router advertisement message. The device sends a power restoration notification message via the network. The device selectively delays a disconnected node from joining the network.
Abstract:
In one embodiment, a rendezvous request message is generated (e.g., by a sender) that specifies a channel C and a rendezvous time T for which a distributed message is to be transmitted in a frequency-hopping computer network. The rendezvous request message is then transmitted on one or more channels used in the computer network based on reaching a plurality of intended recipients of the distributed message with the rendezvous request message prior to rendezvous time T. Accordingly, the distributed message is then transmitted on channel C at rendezvous time T. In another embodiment, a device receives a rendezvous request message, and in response to determining to honor the rendezvous request message, listens for the distributed message on channel C at rendezvous time T.
Abstract:
In one embodiment, a device receives a router advertisement message after a power outage event in a network. The device joins the network, in response to receiving the router advertisement message. The device sends a power restoration notification message via the network. The device selectively delays a disconnected node from joining the network.
Abstract:
In one embodiment, network parameters are dynamically adjusted using weather forecasts. The embodiments include determining a weather forecast that predicts a weather condition proximate to a network. Network parameters are then selected for adjustment based on the predicted weather condition. The selected network parameters are adjusted to improve performance of the network in response to the predicted weather condition.
Abstract:
In one embodiment, a device maintains a predetermined number of high-priority subcarriers for use in communicating high-priority data frames and a predetermined number of low-priority subcarriers for use in communicating low-priority data frames. A data frame is received and a data frame priority is determined for the data frame. If the data frame is determined to be a low-priority data frame, a minimum number of subcarriers, from the low-priority subcarriers, required for communication of the data frame is determined and the data frame is communicated using the minimum number of subcarriers. If the data frame is determined to be a high-priority data frame, a maximum number of subcarriers available, including the high-priority subcarriers and the low-priority subcarriers, is determined and the data frame is communicated using the maximum number of subcarriers.
Abstract:
In one embodiment, the techniques herein provide that a node may receive a packet from a neighboring node in a low power and lossy network (LLN). The node may then extract, from the packet, a link-layer source address from a link layer header and an internet protocol (IP) source address from an IP header. The node may then determine whether the neighboring node originated the packet and, based on that determination, the node may correlate the link-layer source address with the IP source address to provide neighbor discovery.
Abstract:
In one embodiment, each of a plurality of devices in a computer network is configured to i) transmit a unicasted dynamic host configuration protocol (DHCP) solicit message to a neighbor device having a route to a border router as an assumed DHCP relay without regard to location of a DHCP server, and ii) operate as a DHCP relay to receive unicasted DHCP solicit messages and relay the solicit message to the border router of the network without regard to location of the DHCP server, and to relay a DHCP reply to a corresponding requestor device.