摘要:
A reconstruction processor (34) reconstructs acquired projection data (S) into an uncorrected reconstructed image (T). A classifying algorithm (66) classifies pixels of the uncorrected reconstructed image (T) at least into metal, bone, tissue, and air pixel classes. A clustering algorithm (60) iteratively assigns pixels to best fit classes. A pixel replacement algorithm (70) replaces metal class pixels of the uncorrected reconstructed image (T) with pixel values of the bone density class to generate a metal free image. A morphological algorithm (80) applies prior knowledge of the subject's anatomy to the metal free image to correct the shapes of the class regions to generate a model tomogram image. A forward projector (88) forward projects the model tomogram image to generate model projection data (Smodel). A corrupted rays identifying algorithm (100) identifies the rays in the original projection data (S) which lie through the regions containing metal objects. A corrupted rays replacement algorithm (102) replaces the corrupted regions with corresponding regions of the model projection data to generate corrected projection data (S). The reconstruction processor (34) reconstructs the corrected projection data (S) into a corrected reconstructed 3D image (T′).
摘要:
The invention relates to a method of segmenting a three-dimensional structure from a three-dimensional, and in particular medical, data set while making allowance for user corrections. The method is performed with the help of a deformable three-dimensional model whose surface is formed by a network of nodes and mashes that connect these nodes. Once the model has been positioned at the point in the three-dimensional data set at which the structure to be segmented is situated and positions of nodes have, if necessary, been changed by known methods of segmentation, any desired nodes can be displaced manually. The nodes of the model are recalculated by making weighted allowance for the nodes that have been displaced manually.
摘要:
When modeling anatomical structures in a patient for diagnosis or therapeutic planning, an atlas (26) of predesigned anatomical structure models can be accessed, and model of one or more such structures can be selected and overlaid on an a 3D image of corresponding structure(s) in a clinic image of a patient. A user can click and drag a cursor on the model to deform the model to align with the clinical image. Additionally, a processor (16) can generate a volumetric deformation function using splines, parametric techniques, or the like, and can deform the model to fit the image in real time, in response to user manipulation of the model.
摘要:
A method for selecting vertices for performing deformable registration of imaged objects is provided. The selected vertices form corresponding pairs, each pair including a vertex from a first imaged object and a vertex from a second imaged object. The corresponding vertex pairs are sorted in order of distance between the vertices making up the corresponding vertex pair. The corresponding vertex pair with the greatest distance is given top priority. Corresponding vertex pairs that lie within a selected distance from the selected corresponding vertex pair are discarded. In this manner, the number of vertex pairs used for deformable registration of the imaged objects is reduced and therefore allows for processing times that are clinically acceptable.
摘要:
When modeling anatomical structures in a patient for diagnosis or therapeutic planning, an atlas (26) of segmented co-registered CT and MRI anatomical structure reference images can be accessed, and an image of one or more such structures can be selected and overlaid with an MRI image of corresponding structure(s) in a clinical image of a patient. A user can click and drag landmarks or segment edges on the reference MRI image to deform the reference MRI image to align with the patient MRI image. Registration of a landmark in the patient MRI image to the reference MRI image also registers the patient MRI image landmark with a corresponding landmark in the co-registered reference CT image, and electron density information from the reference CT image landmark is automatically attributed to the corresponding registered patient MRI landmark.
摘要:
An imaging system (10) includes imaging modalities such as a PET imaging system (12) and a CT scanner (14). The CT scanner (14) is used to produce a first image (62) which is used for primary contouring. The PET system (12) is used to provide a second image (56), which provides complementary information about the same or overlapping anatomical region. After first and second images (62, 56) are registered with one another the first and second images (62, 56) are concurrently segmented to outline a keyhole (76). The keyhole portion of the second image (56) is inserted into the keyhole (76) of the first image (62). The user can observe the composite image and deform a boundary (78) of the keyhole (76) by a mouse (52) to better focus on the region of interest within previously defined keyhole.
摘要:
The invention relates to a method of segmenting a three-dimensional structure from a three-dimensional, and in particular medical, data set while making allowance for user corrections. The method is performed with the help of a deformable three-dimensional model whose surface is formed by a network of nodes and mashes that connect these nodes. Once the model has been positioned at the point in the three-dimensional data set at which the structure to be segmented is situated and positions of nodes have, if necessary, been changed by known methods of segmentation, any desired nodes can be displaced manually. The nodes of the model are re-calculated by making weighted allowance for the nodes that have been displaced manually.
摘要:
The invention relates to a method for segmentation of a three-dimensional structure in a three-dimensional data set, especially a medical data set. The method uses a three-dimensional deformable model, wherein the surface of the model consists of a net of polygonal meshes. The meshes are split into groups, and a feature term is assigned to each group. After the model has been placed over the structure of interest, the deformable model is recalculated in consideration of the feature terms of each group.
摘要:
Ground glass opacities in the lung are non-solid nebular-like shadows in the parenchyma tissue of the lung, which may be precursors of a lung cancer. According to the present invention, ground glass opacities may automatically be determined on the basis of a texture analysis of the parenchyma. Advantageously, according to the present invention, a robust and reliable determination of ground glass opacities may be provided, even if vessels, lung walls, airspace or bronchi walls are present within the local neighborhood of the ground glass opacity.
摘要:
The invention relates to a method and to an apparatus for visualizing a sequence of volume images of a moving object. Methods and apparatus of this kind are used in cases where a sequence of three-dimensional volume images is to be rendered as a two-dimensional image, for example, for a viewer. The invention utilizes the fact that usually only the volume values of a part of the voxels are relevant for the derivation of a two-dimensional image from a volume image. In the case of a sequence of volume images of a moving object, the derivations of the two dimensional images can be accelerated by storing the voxels which are relevant for the visualization during the visualization of a first volume image and by deriving the relevant two-dimensional image during the visualization of a second volume image exclusively from the volume values of the stored voxels and from voxels neighboring such stored voxels. The selection of volume values of neighboring voxels for use is dependent on the motion of the object. The voxels of the second volume image which are relevant for the visualization are stored again and used accordingly for the visualization of a third volume image. These steps are repeated accordingly for further volume images of the sequence.