Abstract:
This disclosure relates to advanced image signal processing technology including encoded signals and digital watermarking. We disclose methods, systems and apparatus for selecting which ink(s) should be selected to carry an encoded signal for a given machine-vision wavelength for a package design. We also disclose product packages, and methods to generate such, including a sparse mark in a first ink and an overprinted ink flood in a second ink. The first ink and the second ink are related through tack and spectral reflectance difference. Of course, other methods, packages, systems and apparatus are described in this disclosure.
Abstract:
Signal detection and recognition employees coordinated illumination and capture of images under to facilitate extraction of a signal of interest. Pulsed illumination of different colors facilitates extraction of signals from color channels, as well as improved signal to noise ratio by combining signals of different color channels. The successive pulsing of different color illumination appears white to the user, yet facilitates signal detection, even for lower cost monochrome sensors, as in barcode scanning and other automatic identification equipment.
Abstract:
The present disclosure relates generally to encoding signals for spot colors. In one implementation a substitute spot color+CMY tint is selected to replace an original spot color. The CMY tint can be transformed to carry an encoded signal. Of course, other features, combinations and technology are described herein.
Abstract:
The present disclosure relate generally to image signal processing, color science and signal encoding. Digital watermarking can be applied to color image data through use of a luminance contrast sensitivity function and a chrominance contrast sensitive function. Of course, other features, combinations and claims are disclosed as well.
Abstract:
The present disclosure relates to signal processing such as digital watermarking and data hiding. A sparse or dense digital watermark signal can be conveyed with a narrow-band absorption material corresponding to a center wavelength of a Point of Sale (POS) barcode scanner. The POS barcode scanner typically captures 2D imagery. Since the narrow-band absorption material absorbs over a narrow-band it is relatively imperceptible to the Human Visual System (HVS) but can be seen by the POS scanner.
Abstract:
Signal detection and recognition employees coordinated illumination and capture of images under to facilitate extraction of a signal of interest. Pulsed illumination of different colors facilitates extraction of signals from color channels, as well as improved signal to noise ratio by combining signals of different color channels. The successive pulsing of different color illumination appears white to the user, yet facilitates signal detection, even for lower cost monochrome sensors, as in barcode scanning and other automatic identification equipment.
Abstract:
The present disclosure relate generally to digital watermarking and signal encoding. Various colors can be evaluated and modified to carry an encoded or auxiliary signal.
Abstract:
Arrangements involving portable devices (e.g., smartphones and tablet computers) are disclosed. One arrangement enables a content creator to select software with which that creator's content should be rendered—assuring continuity between artistic intention and delivery. Another utilizes a device camera to identify nearby subjects, and take actions based thereon. Others rely on near field chip (RFID) identification of objects, or on identification of audio streams (e.g., music, voice). Some technologies concern improvements to the user interfaces associated with such devices. Others involve use of these devices in connection with shopping, text entry, sign language interpretation, and vision-based discovery. Still other improvements are architectural in nature, e.g., relating to evidence-based state machines, and blackboard systems. Yet other technologies concern use of linked data in portable devices—some of which exploit GPU capabilities. Still other technologies concern computational photography. A great variety of other features and arrangements are also detailed.
Abstract:
This patent document relates generally to steganography and digital watermarking. One claim recites an apparatus comprising: memory for storing data representing an image or video, in which the data comprises first data corresponding to first color data, second data corresponding to second color data and third data corresponding to third color data, the image or video to host auxiliary information; a processor programmed for: weighting the first data, the second data and the third data according to at least the following two factors: i) a color direction associated with an expected embedding direction; and ii) expected image capture or signal processing; and determining from weighted first data, weighted second data and weighted third data, changes in one or more image or video attribute(s), in which the auxiliary information is conveyed through the changes. Of course, other claims and combinations are provided too.
Abstract:
The present disclosures relates generally to digital watermarking and data hiding. One claim recites an apparatus comprising: means for storing a watermark signal; means for embedding a watermark signal in a first portion of a video signal; means for preconditioning the watermark signal in a first manner to allow expanded detection of said preconditioned watermark signal in the presence of first distortion; means for embedding the watermark signal preconditioned in the first manner in a second portion of the video signal; means for preconditioning the watermark signal in a second manner to allow expanded detection of said preconditioned watermark signal in the presence of second distortion; and means for embedding the watermark signal preconditioned in the second manner in a third portion of the video signal. Of course, other claims are provided too.