Abstract:
A method for wireless communications is provided. The method includes transmitting a first signal during a first time interval. The first signal is encoded with a first spreading sequence generated by permutating a root sequence based on a permutation parameter associated with a first index. The method further includes transmitting a second signal during a second time interval. The second signal is encoded with a second spreading sequence generated by permutating the root sequence based on a permutation parameter associated with a second index. The method further includes receiving an indication of either the first index or the second index from a user equipment (UE).
Abstract:
System and method embodiments are provided for network cell discovery. In an embodiment, a method in a mobile device includes receiving, at the mobile device, at least one parameter from a first network component, wherein the at least one parameter is associated with a discovery signal (DS) generated by and transmitted from a second network component, wherein the parameter specifies a time period between successive transmissions of the DS, an offset within the time period, and a duration of each transmission of the DS; receiving, at the mobile device, according to the time period and the offset, the DS from the second network component; and suspending reception on a first carrier radio resource during a gap in successive transmissions on the first carrier radio resource and receiving a signal on a second carrier radio resource during the gap, wherein the gap is determined according to the parameter.
Abstract:
An embodiment method for beam-related information and channel state information feedback includes receiving first analog beamformed reference signals; transmitting a first report indicating a set of selected analog beamformed reference signals and a transmission rank that jointly maximize a first performance criterion for subsequent transmissions by a transmitter that transmitted the first analog beamformed reference signals; receiving second analog beamformed reference signals maximized in accordance with the set of selected analog beamformed reference signals and the transmission rank; and transmitting a second report, in accordance with the second analog beamformed reference signals, indicating a channel quality indicator and a precoding matrix indicator that maximize a second performance criterion for subsequent transmissions by the transmitter that transmitted the first analog beamformed reference signals and the second analog beamformed reference signals.
Abstract:
A method for cell adaptation includes receiving, by a user equipment (UE), one or more transmission parameters for a transition reference signal (TRS). One or more cells is transitioned between a reduced activity mode and an active transmission and reception mode in accordance with the TRS. The method further includes the UE determining whether or not to transmit the TRS in accordance with one or more TRS transmission criteria, and the UE transmitting the TRS in accordance with the one or more transmission parameters.
Abstract:
User Equipments (UEs) may be assigned a set of aggregated component carriers for downlink carrier aggregation and/or carrier selection. Some UEs may be incapable of transmitting uplink signals over all component carriers in their assigned set of aggregated component carriers. In such scenarios, a UE may need to perform SRS switching in order to transmit SRS symbols over all of the component carriers. Embodiments of this disclosure provide various techniques for facilitating SRS switching. For example, a radio resource control (RRC) message may be used to signal a periodic SRS configuration parameter. As another example, a downlink control indication (DCI) message may be used to signal an aperiodic SRS configuration parameter. Many other examples are also provided.
Abstract:
A method for providing user equipment access to millimeter wave stations through a microwave station includes receiving an indication of millimeter wave stations operating within a microwave coverage area of a microwave station. In a microwave band, information associated with the millimeter wave stations is broadcasted to user equipment in the microwave coverage area. A request is sent to the millimeter wave stations to transmit configuration signals over a microwave band. An instruction is transmitted over the microwave band to the user equipment to perform proximity measurements of the configuration signals. According to the proximity measurements, a request is sent to a particular millimeter wave station to transmit beamforming signals over a millimeter wave band. An instruction is transmitted over the microwave band to the user equipment to perform beamforming measurements of the beamforming signals. According to the beamforming measurements, the user equipment is switched to millimeter wave operation.
Abstract:
An embodiment method for managing uplink transmission includes dividing, by a network controller, frequency resources in a single OFDM symbol into two sets of frequency resources. The method further includes signaling, by the network controller, to a UE to transmit data in a first set of the frequency resources and to transmit a pilot signal in a second set of the frequency resources.
Abstract:
System and method embodiments are provided for a subframe structure for wideband LTE. In an embodiment, a method in a communications controller for transmitting a packet to a wireless device includes signaling a UL/DL configuration to the wireless device, wherein the UL/DL configuration indicates a quantity of uplink microframes in a group of microframes, wherein each subframe includes a plurality of microframes, and wherein the group of microframes includes a consecutive sequence downlink microframes and a consecutive sequence of uplink microframes. The packet is transmitted to the wireless device in one downlink microframe. The method further includes receiving an acknowledgement of the packet in an uplink microframe, wherein the uplink microframe is determined in accordance with the one downlink microframe and the uplink-downlink configuration, and wherein the acknowledgement is received in a same subframe as a subframe utilized for transmitting the packet to the wireless device.
Abstract:
A device, network, and method for providing a variable-duration reference signal. In an embodiment, a method for wireless communications includes determining, by a first device, a starting timing and an ending timing of one or more symbols of a first carrier in accordance with a reference timing for transmission and reception, wherein each of the one or more symbols has a fixed duration; determining, by the first device, a signal of variable duration on the first carrier, wherein the starting timing of the signal of variable duration is offset from the starting timing of any of the one or more symbols of the first carrier in accordance with the reference timing; and transmitting, by the first device on the first carrier, the signal of variable duration, at the starting timing of the signal of variable duration.
Abstract:
An embodiment of the present invention is disclosed including a method for adaptive reception, the method. The method includes receiving, by a user equipment (UE), an indicator from a first component carrier, the indicator indicating whether a second component carrier is in the On state. Receiving, by the UE, from the second component carrier a subframe wherein a reference signal is provided at a first symbol position of the subframe in a majority of subcarriers of the subframe. The second component carrier and the UE are then synchronized based on the reference signals. The UE then initiates a data link with the second component carrier.