Abstract:
Systems and methods for User Equipment (UE) synchronization for Device-to-Device (D2D) out-of-coverage communication are provided. In an embodiment, a method in an in-coverage (IC) UE for the IC UE to become a synchronization source for out-of-coverage UEs for D2D communication includes obtaining, by the IC UE scanning parameters; scanning, by the IC UE, for out-of-coverage synchronization signals; transmitting, by the IC UE, a measurement report to a Transmission Point (TP) in response to a report trigger, the measurement report comprising information of one or more received out-of-coverage synchronization signals; receiving, by the IC UE, a configuration command from the TP instructing the IC UE to become a synchronization source in response to a configuration command from the TP; and transmitting, by the IC UE, a D2D synchronization signal (SS) for a duration of time or until instructed not to do so by the TP.
Abstract:
A method for cell adaptation includes receiving, by a user equipment (UE), one or more transmission parameters for a transition reference signal (TRS). One or more cells is transitioned between a reduced activity mode and an active transmission and reception mode in accordance with the TRS. The method further includes the UE determining whether or not to transmit the TRS in accordance with one or more TRS transmission criteria, and the UE transmitting the TRS in accordance with the one or more transmission parameters.
Abstract:
A device is configured to perform a method of device-to-device (D2D) communication in a wireless communication network in accordance with a Long Term Evolution (LTE) standard. The method includes entering an RRC-Idle state or an RRC-Connected state. The method also includes transmitting, in the RRC-Idle state or RRC-Connected state, a D2D discovery signal for receipt by at least one second device in the network. The method further includes receiving, in the RRC-Idle state or RRC-Connected state, at least one D2D discovery signal from the at least one second device in the network.
Abstract:
A method for performing open discovery in a communications system includes determining, by a device-to-device (D2D ) device, resource allocation information for a discovery cycle including discovery resources allocated for transmission of discovery signals by D2D devices. The method also includes selecting, by the D2D device, a first discovery resource of the discovery cycle in accordance with the resource allocation information, and transmitting, by the D2D device, a discovery signal in the selected first discovery resource.
Abstract:
A method for operating a mobile device adapted for device-to-device (D2D) communications includes determining a utilization measure for discovery resources (DRs) allocated for D2D discovery in a communications system, and sending a utilization measure report to an evolved NodeB (eNB) when a reporting criterion is satisfied, wherein the utilization measure report is configured to prompt an adjustment to a number of DRs allocated for D2D discovery when an adjustment condition is met.
Abstract:
A method for device-to-device (D2D) communication includes sensing D2D resources from a pool of resources for a predetermined duration to produce measurements of the D2D resources and determining statistics in accordance with the measurements of the D2D resources. The method also includes determining a first subset of the D2D resources in accordance with the statistics and transmitting, by a first user equipment (UE) to a second UE, data over the first subset of the D2D resources.
Abstract:
System and method embodiments are provided for controlling and managing in-network device-to-device (D2D) communications. In an embodiment, a method for a UE performing device-to-device (D2D) communication includes generating a D2D buffer status report (BSR) for a D2D communication link between the UE and a second UE that provides information related to an amount of D2D data available for transmission, wherein the D2D BSR comprises a D2D BSR logical channel identifier (LCID); transmitting the D2D BSR in a control element; receiving, a resource allocation for the D2D link; and transmitting D2D data over the allocated resources.
Abstract:
An eNB is configured to perform different methods for assigning discovery resources. One method includes receiving a request for discovery resources from an announcing user equipment (UE); allocating a plurality of discovery resources in response to the request; and transmitting a message indicating the plurality of discovery resources, the transmitted message configured to be used by a monitoring UE to determine which discovery resources to monitor. In some embodiments, this may include updating a message to indicate which discovery resources have been allocated, and broadcasting the updated message to a plurality of UEs including the monitoring UE.
Abstract:
A device is configured to perform a method of wireless communication in a wireless communication network. The method includes receiving, from a communications controller, a device-to-device (D2D) subframe configuration to communicate with one or more second wireless devices, the subframe configuration indicating one or more subframes in which to transmit a D2D signal or receive one or more D2D signals. The method also includes receiving, from the communications controller, scheduling information to transmit a first signal to the communications controller on a subframe indicated by the D2D subframe configuration. The method further includes prioritizing the transmission of the first signal over a transmission of the D2D signal or a reception of the one or more D2D signals, and transmitting the first signal.
Abstract:
Embodiments are provided for implementing network adaptation schemes, including small cell on/off adaptation and transmission power control. In an embodiment method for supporting network adaptation, a network component receives a discovery reference signal (DRS) from a network controller that is in a switch-off transmission mode. The network component then performs measurements according to the DRS, and reports the measurements to a network associated with the network controller. In return, the network component receives a radio resource control (RRC) signaling from the network. The RRC signaling includes configuration information allowing a connection between the network component and the network controller. The network component then connects with the network controller in accordance with the configuration information.