Abstract:
An article treatment method includes positioning an article having a base material. A weld filler material is applied to the base material by welding to form a treated article. The weld filler material includes at least one temperature depressant element at a concentration sufficient to form potential eutectic-containing zones in the welded article. The potential eutectic-containing zones contain the at least one temperature depressant element. The welded article is heated to a temperature sufficiently high and for a time sufficiently long to form at least partially liquefied eutectic-containing zones. The at least partially liquefied eutectic zones are capable of flow into cracks formed during the welding.
Abstract:
A multilayer component and fabrication process are disclosed. The multilayer component includes a foil surface layer abutting the bond coat layer and a channel-forming material positioned between the foil surface layer and a substrate. The channel-forming material defines at least a portion of a channel. The channel can be at least partially defined by a channel-forming material brazed with a foil surface layer to a substrate of the multilayer component. The process includes applying one or more layers to a foil surface layer and applying a channel-forming material to at least partially define a channel between the foil surface layer and a substrate.
Abstract:
A system and method for repairing a metal substrate includes an electrospark device and an electrode removably supported in the electrode holder. The electrospark device applies a coating of a material when placed into contact with the metal substrate. A cooling device to lowers the temperature of shielding gas flow below an ambient temperature. A conduit is arranged to direct a flow of the shielding gas to the interface of the electrode and the substrate to cool the area of the substrate receiving the coating.
Abstract:
A welding process, welding system and welded article are disclosed. The welding process includes generating a first beam from a stationary fusion apparatus and generating a second beam from a rotatable fusion apparatus. The first beam and the second beam form a weld in an article. The welding system includes a stationary fusion apparatus and a rotatable fusion apparatus directed at an article to be welded, the stationary fusion apparatus and rotatable fusion apparatus being arranged and disposed to form a single weld in the article. The welded article includes a first element welded to a second element, the welded article having a decreased root reinforcement, in an inaccessible region, from that of a hybrid stationary fusion apparatus.
Abstract:
A ternary magnetic braze alloy and method for applying the braze alloy in areas having limited access. The magnetic braze alloy is a nickel-based braze alloy from the perminvar region of the Ni, Fe, Co phase diagram. The braze alloy includes, by weight percent 8-45% Fe, 0-78% Co, 2.0-4.0% of an element selected from the group consisting of B and Si and combinations thereof, and the balance Ni. The nickel-based braze alloy is characterized by a brazing temperature in the range of 1850-2100° F. The nickel-based braze alloy is magnetic below its Curie temperature.