Abstract:
A method for the preparation of steel sheets for fabricating a welded steel blank is provided. The method includes a step of removing at least part of the first and second metal alloy layers in first and second peripheral zones of pre-coated steel first and second sheets, respectively, by simultaneously ablating the first and second precoatings in the first and second peripheral zones of the pre-coated steel first and second sheets to define first and second ablation zones, the first and second peripheral zones being zones of the first and second principal faces closest to the median plane and located on either side of the median plane.
Abstract:
A CNC machining centre is disclosed, with an additive unit that forms an unmachined workpiece by additive production and that comprises an operating member with a rotation axis, and with a subtractive unit that removes material from the unmachined workpiece formed by the additive unit and that comprises a tool-holding spindle with a motorized spindle axis, with a subtractive configuration, in which the spindle axis of the subtractive unit carries a tool for removing material, and with an additive configuration, in which the spindle axis of the subtractive unit is connected to the rotation axis to drive the operating member of the additive unit and in which a prevalent part of the tool-holding spindle is situated next to at least one part of the operating member, where “next to” means in a horizontal direction.
Abstract:
A manufacturing method of a semiconductor device includes: a first step of, after joining a wire to an electrode using a capillary, forming a wire part by moving the capillary to a third target pointwhile feeding out the wire; a second step of forming a bent part by moving the capillary to a fourth target point while feeding out the wire; a third step of processing the bent part into a planned cut part by repeating lowering and raising of the capillary for multiple times; and a fourth step of cutting the wire at the planned cut part by raising the capillary with a wire clamper closed to form a pin wire.
Abstract:
A surface treatment system includes a holder configured to secure an object within the holder and a surface treatment device that is configured to treat a surface of the object within the holder with two types of surface treatments. The device is capable of producing a plasma or a flame at its nozzle for surface treatment. By controlling the materials supplied to the device and the way in which is operated, either a flame or plasma is produced. Thus, the surface treatment system is capable of treating a wide range of materials for printing by a direct-to-object printer.
Abstract:
The shaping precision is improved without performing finishing processing. A three-dimensional laminating and shaping apparatus includes a material ejector that ejects a material of a three-dimensional laminated and shaped object onto a shaping table on which the three-dimensional laminated and shaped object is shaped, a light beam irradiator that irradiates the ejected material with a light beam, a cutter that cuts a bead formed when the material irradiated with the light beam is melted and solidified, and a controller that controls ejection of the material by the material ejector, irradiation with the light beam by the light beam irradiator, and cutting of the bead by the cutter. The cutter cuts an upper surface of the bead by a dimension which is smaller than a laminating height and is ½ or less of a bead thickness.
Abstract:
A method for producing a camshaft may include: providing at least two metallic components; and welding the at least two components to one another via a combined induction/friction welding method. According to an implementation, one of the at least two components is a camshaft tube and the other of the at least two components is a drive element.
Abstract:
A process for identifying existence of a welded spot on a cut-out part and retention of the cut-out part on a workpiece in a wire electrode is disclosed which makes it possible to go ahead process steps while identifying automatically the retention of the cut-out part on a workpiece, ensuring unmanned work of the wire electrode discharge processor. The process includes an inspection step to detect whether the wire electrode comes into contact with a welded spot while moving the wire electrode along the cutting path of kerf in the workpiece, after the wire electrode has come into contact with the welded spot, a step goes ahead to one of next procedures, and after the wire electrode has come into no contact with the welded spot, a step goes ahead to generate an alarm and the wire electrical discharge is ceased.
Abstract:
A method of welding panels overlapping each other includes a one-directional clamping step that performs one-directional clamping by positioning electrodes of a pair of one-directional spot welding guns with respect to an upper panel and a lower panel overlapping each other, a pressure welding step that forms a plurality of pressure welding portions in a zero gap status by pressure-welding the upper panel to the lower panel in a temporary welding status, by pressing and supplying electricity to the upper panel with the electrodes of the one-directional spot welding guns, plasma spot step that forms a molten portion between the pressure welding portions by performing plasma welding on the pressure welding portions with a plasma welding machine, and a cooling step that forms a welded portion by overlapping the pressure welding portions and the molten portion between the upper panel and the lower panel by cooling the molten portion.
Abstract:
A welding system comprises a two manipulators and a controller. A first manipulator has a joint detection device and a first welding device, usually of the laser type while the second manipulator has a second welding device, usually of the arc weld type. The joint detection device is operative to read welding joint characteristics along a welding joint. The controller determines a corrected trajectory based on a predetermined welding trajectory and on the welding joint characteristics read by the joint detection device. This corrected trajectory is transmitted with a first time delay to the first manipulator and with a second time delay to the second manipulator. The second time delay is a function of a distance between the joint detection device and the second welding device. A corresponding method for welding components along a welding joint is also disclosed.
Abstract:
The present application relates to the technical field of 3D printing apparatus, and discloses an electron beam melting and laser milling composite 3D printing apparatus which comprises a base, in which a powder spreading structure configured for spreading metal powders onto the machining platform is arranged on the base, an electron beam emitting structure and a laser milling head are arranged above the machining platform, the electron beam emitting structure is configured for emitting an electron beam to melt the metal powder layer to form a single-layer or multi-layer approximate body, and the laser milling head is configured for emitting a laser beam to mill the single-layer or multi-layer approximate body.