Abstract:
A multi-core transport system for a resonant fiber optic gyroscope is provided. The transport system has a transport fiber configured to transmit a clockwise signal and a counterclockwise signal, wherein the transport fiber has at least a first core and a second core. The first core and second core are configured such that when the first core imparts a first effect on the clockwise signal, the second core imparts a second effect on the counterclockwise signal, wherein the second effect substantially mirrors the first effect. The system further comprises a first coupler configured to optically couple the clockwise signal to the first core, and the counterclockwise signal to the second core; and a second coupler configured to optically couple the clockwise signal from the first core to a resonator, and the counterclockwise signal from the second core to the resonator.
Abstract:
Systems and methods for a resonant fiber optic gyroscope with a polarizing crystal waveguide coupler are provided. In one embodiment, an optical fiber resonator comprises: a polarizing single crystal material having a first crystal lattice axis; a first waveguide formed in the crystal material; a second waveguide formed in the crystal material running parallel to the first waveguide; and an optical fiber sensing coil. The first waveguide comprises a bend that approaches the second waveguide defining a coupling region between the first and second waveguides. The first and second waveguides are polarized to guide light having a polarization state aligned to the first crystal lattice axis. The second waveguide and the sensing coil are coupled into a resonator configuration forming a ring resonator, the second waveguide comprising a first port coupled to a first end of the coil, and a second port coupled to a second end of the coil.
Abstract:
Systems and methods for a resonant fiber optic gyroscope with a polarizing crystal waveguide coupler are provided. In one embodiment, an optical fiber resonator comprises: a polarizing single crystal material having a first crystal lattice axis; a first waveguide formed in the crystal material; a second waveguide formed in the crystal material running parallel to the first waveguide; and an optical fiber sensing coil. The first waveguide comprises a bend that approaches the second waveguide defining a coupling region between the first and second waveguides. The first and second waveguides are polarized to guide light having a polarization state aligned to the first crystal lattice axis. The second waveguide and the sensing coil are coupled into a resonator configuration forming a ring resonator, the second waveguide comprising a first port coupled to a first end of the coil, and a second port coupled to a second end of the coil.
Abstract:
A method of measuring beat frequency comprises modulating a first optical signal and a second optical signal, wherein the first modulated optical signal includes a first carrier frequency and a first plurality of sideband frequencies and the second modulated optical signal includes a second carrier frequency and a second plurality of sideband frequencies. The method also comprises combining a fraction of the first modulated optical signal with a fraction of the second modulated optical signal into a combined signal and determining a carrier beat frequency. The method further comprises selecting a frequency range from the combined signal; performing a fast Fourier transform (FFT) on an electrical signal representing the selected frequency range; tracking the carrier beat frequency based on the FFT; and outputting a rate signal based on the tracked carrier beat frequency, the rate signal indicating a rotation rate of the resonator fiber optic gyroscope.
Abstract:
Systems and methods for a polarization matched resonator fiber optic gyroscope are provided. In one embodiment an RFOG comprises: a light source; a fiber optic ring resonator; a photodetector that outputs an electrical signal that varies as a function of optical intensity; and an input light polarization servo. A light beam from the servo is launched into the resonator ring in a first direction of circulation. The input polarization servo comprises a birefringence modulator that modulates a phase shift between two components of an input polarization state of the light beam at ωm, the modulator is controlled to drive towards zero a 1st harmonic of ωm as measured in the electrical signal. The servo further comprises a tunable ½ waveplate that adjusts an amplitude of the two components of the input polarization state relative to each other. The tunable ½ waveplate is controlled to maximize a peak optical intensity as measured in the electrical signal.
Abstract:
A dispersion managed interferometric fiber optic gyroscope comprising: a coupler coupled to the broadband light source via a first input fiber; an IOC comprising: a beamsplitter that directs the input signal to a first output and a second output; a combiner configured to combine a first return signal from the first output and a second return signal from the second output into a combined return signal; an integrated optical circuit input coupled to the coupler via a second input fiber; a fiber optic gyroscope sensing coil coupled to a first pigtail fiber and second pigtail fiber, the sensing coil comprising sensing fibers, wherein at least one dispersion slope of at least one of the first input fiber, second input fiber, first pigtail fiber, second pigtail fiber, and the sensing fibers is selected such that the signals at the IOC input has a second order coherence substantially equal to two.
Abstract:
A resonator fiber optic gyroscope is provided. The resonator fiber optic gyroscope includes a gyroscope resonator, a laser; a clockwise modulator; a clockwise circulator; a clockwise reflection detector; a first-lock-in-amplifier, a clockwise-resonance-tracking servo to receive output from the first-lock-in-amplifier and to provide feedback to the laser to lock the laser to the gyroscope resonator; a clockwise transmission detector to detect an optical beam output from the counter-clockwise input port; a second servo; a second-lock-in-amplifier; and a third-lock-in-amplifier. The first and second lock-in-amplifiers demodulate at the first harmonic of the modulation frequency. The second-lock-in-amplifier demodulates at the second harmonic of the modulation frequency. Either the modulation frequency of the clockwise optical beam is locked to (n+0.5) times the FSR through the second servo, where n is zero or a positive integer, or the FSR is locked to 1/(n+0.5) times the modulation frequency of the clockwise optical beam through the second servo.
Abstract:
One embodiment is directed towards a resonator fiber optic gyroscope (RFOG) including a resonator, one or more light sources coupled to the resonator, and resonance tracking electronics coupled to the resonator. The one or more light sources are configured to produce at least two light beams for input into the fiber coil, the at least two light beams including a first light beam at a first frequency and a second light beam at a second frequency, the first and second frequencies locked to nearby resonance modes of the resonator. The resonance tracking electronics are configured to process output light from the resonator and generate a signal therefrom, the signal indicative of a rotation rate of the resonator. The fiber coil has approximately zero total accumulated chromatic dispersion at the first frequency and the second frequency of the first light beam and the second light beam.
Abstract:
A laser apparatus comprises a pump laser device, and a polarizing optical fiber having a proximal end and a distal end, with the polarizing optical fiber coupled to the pump laser device at the proximal end. At least one output reflector is written on the polarizing optical fiber toward the distal end. Only one polarization mode is supported when a laser beam is transmitted through the polarizing optical fiber from the pump laser device.
Abstract:
Embodiments utilize an optical frequency comb generator coupled to an optical resonator of an optical gyroscope. The optical frequency comb generator generates an optical frequency comb having frequency peaks that each correspond to a respective resonance frequency of the optical resonator. A control servo can be coupled to the optical frequency comb generator and controls the optical frequency comb output from the optical frequency comb generator. In doing so, the optical frequency comb remains tuned to the resonance frequencies of the optical resonator during gyroscope operation.