摘要:
A fuel cell stack configured to alleviate pressure and decrease the flow rate of at least one of a fuel and an oxidant is disclosed. The fuel cell stack includes a membrane-electrode assembly, an anode separator, a cathode separator and a filing member. The membrane-electrode assembly may include an electrolyte membrane, an anode formed on a first surface of the electrolyte membrane, and a cathode formed on a second surface of the electrolyte membrane. The anode separator may include a fuel channel, a fuel inlet manifold in fluid communication with the fuel channel, and a fuel outlet manifold in fluid communication with the fuel channel. The cathode separator may include an oxidant channel, an oxidant inlet manifold in fluid communication with the oxidant channel, and an oxidant outlet manifold in fluid communication with the oxidant channel. The filling member may be positioned within at least one of the fuel inlet manifold and the oxidant inlet manifold.
摘要:
A membrane-electrode assembly constructed with an anode and a cathode facing each other, and a polymer electrolyte membrane disposed therebetween. At least one of the anode and the cathode includes an electrode substrate that includes a carbon fiber based sheet coated with micro-carbons and a catalyst layer disposed on the electrode substrate with the micro-carbons contacting the catalyst layer.
摘要:
A fuel cell is provided. The fuel cell includes a medium member. Unit areas are formed at both sides of the medium member. The unit areas include outlets and inlets which allow a fuel to flow. First path members which have first flowpaths for circulating the fuel are disposed at the unit areas. Membrane-electrode assemblies are connected to the respective first path members. Second path members which have second flowpaths for circulating air are connected to the respective membrane-electrode assemblies.
摘要:
The polymer electrolyte membrane according to the present invention includes a proton-conducting polymer including metal ions bound to polyalkylene oxide. The polymer electrolyte membrane can save manufacturing cost of a fuel cell and improve proton conductivity and mechanical strength.
摘要:
A membrane-electrode assembly for a fuel cell, which includes an anode and a cathode facing each other; and a polymer electrolyte membrane disposed between the anode and cathode. The cathode includes a first catalyst layer that includes catalyst particles, and a second catalyst layer that includes the catalyst particles and a pore-forming agent. The membrane-electrode assembly efficiently performs mass transfer and release, due to pores in the second catalyst layer.
摘要:
A fuel cell is provided. The fuel cell includes a medium member. Unit areas are formed at both sides of the medium member. The unit areas include outlets and inlets which allow a fuel to flow. First path members which have first flowpaths for circulating the fuel are disposed at the unit areas. Membrane-electrode assemblies are connected to the respective first path members. Second path members which have second flowpaths for circulating air are connected to the respective membrane-electrode assemblies.
摘要:
The present invention relates to a membrane-electrode assembly and a fuel cell system including the membrane-electrode assembly. The membrane-electrode assembly includes a corrugated polymer electrolyte membrane and an anode and a cathode respectively disposed at each side of the polymer electrolyte membrane. The corrugated polymer electrolyte membrane has a pattern on its surface, and the corrugated surface of the polymer electrolyte membrane increase an area of an interface between the polymer electrolyte membrane and a catalyst layer. The present invention provides a fuel cell system with high power and high performance by adapting the corrugated polymer electrolyte membrane to a membrane-electrode assembly of a fuel cell.
摘要:
The present invention provides a polymer electrolyte membrane for a fuel cell, including a porous membrane including ceramic fibers crisscrossed in a network and pores formed by the ceramic fibers coalesced at intersection points, and a proton conductive polymer inside the pores.
摘要:
An electrode for a fuel cell of the present invention includes an electrode substrate, a microporous layer formed on the surface of the electrode substrate, and a nano-carbon layer formed on the surface of the microporous layer with a catalyst layer coated on the surface of the nano-carbon layer. Alternatively, an electrode for a fuel cell includes an electrode substrate in which carbon particles are dispersed, a nano-carbon layer on the electrode substrate, and a catalyst layer on the nano-carbon layer.
摘要:
The present invention relates to a negative electrode for a lithium metal battery and a lithium metal battery comprising the same. The negative electrode of the present invention comprises a negative active material layer of metallic lithium or a lithium alloy, and a passivation layer formed on the negative active material layer. The passivation layer has a structure comprising a 3-dimensionally cross-linked polymer network matrix penetrated by linear polymers. The passivation layer formed on the surface of the negative electrode reduces reactivity of the negative electrode and stabilizes the surface, so that it offers a lithium metal battery having superior life cycle characteristics.