摘要:
The electrode for a fuel cell of the invention includes: an electrode substrate; and a catalyst layer having a filler layer formed on the surface of the electrode substrate and a catalyst coating the filler layer.
摘要:
The electrode for a fuel cell of the invention includes: an electrode substrate; and a catalyst layer having a filler layer formed on the surface of the electrode substrate and a catalyst coating the filler layer.
摘要:
An electrode for a fuel cell of the present invention includes an electrode substrate, a microporous layer formed on the surface of the electrode substrate, and a nano-carbon layer formed on the surface of the microporous layer with a catalyst layer coated on the surface of the nano-carbon layer. Alternatively, an electrode for a fuel cell includes an electrode substrate in which carbon particles are dispersed, a nano-carbon layer on the electrode substrate, and a catalyst layer on the nano-carbon layer.
摘要:
The electrode for a fuel cell of the present invention includes a catalyst layer and an electrode substrate supporting the catalyst layer, where the electrode substrate includes a hydrophilic region and a hydrophobic region separated from each other. The hydrophilic region and the hydrophobic region that are separated from each other can easily release water produced at the cathode, and thereby prevent clogging of pores of the membrane by water, and smoothly diffuse the reactants resulting in obtaining a high current density.
摘要:
The electrode for a fuel cell of the present invention includes a catalyst layer and an electrode substrate supporting the catalyst layer, where the electrode substrate includes a hydrophilic region and a hydrophobic region separated from each other. The hydrophilic region and the hydrophobic region that are separated from each other can easily release water produced at the cathode, and thereby prevent clogging of pores of the membrane by water, and smoothly diffuse the reactants resulting in obtaining a high current density.
摘要:
A membrane-electrode assembly constructed with an anode and a cathode facing each other, and a polymer electrolyte membrane disposed therebetween. At least one of the anode and the cathode includes an electrode substrate that includes a carbon fiber based sheet coated with micro-carbons and a catalyst layer disposed on the electrode substrate with the micro-carbons contacting the catalyst layer.
摘要:
The electrode for a fuel cell of the present invention includes a carbonaceous electrode substrate, a microporous layer formed on the surface of the electrode substrate with the microporous layer including a carbonized polymer, and nano-carbon formed on the surface of the microporous layer with a catalyst layer coated on the surface of the nano-carbon. Alternatively, an electrode for a fuel cell includes a carbonaceous electrode substrate in which carbon particles are dispersed, a nano-carbon on the electrode substrate with a catalyst layer on the surface of the nano-carbon.
摘要:
The electrode for a fuel cell of the present invention includes a carbonaceous electrode substrate, a microporous layer formed on the surface of the electrode substrate with the microporous layer including a carbonized polymer, and nano-carbon formed on the surface of the microporous layer with a catalyst layer coated on the surface of the nano-carbon. Alternatively, an electrode for a fuel cell includes a carbonaceous electrode substrate in which carbon particles are dispersed, a nano-carbon on the electrode substrate with a catalyst layer on the surface of the nano-carbon.
摘要:
A polymer electrolyte membrane for a fuel cell includes a porous membrane forming micropores. Proton-conducting polymers fill the micropores of the porous membrane. In addition, a method for preparing the polymer electrolyte membrane includes: preparing a porous membrane having a plurality of micropores; and filling the micropores with proton-conducting polymer.
摘要:
A polymer electrolyte membrane for a fuel cell includes a porous membrane formed with fine pores, hygroscopic polymer layers coated inside the fine pores of the porous membrane, and proton conductive polymers filled in the fine pores of the porous membrane coated with the hygroscopic polymer layers.