Abstract:
A touch sensor with a transparent conductive layer and a metalized border area at least partially bordering the transparent conductive layer and forming a far-field antenna.
Abstract:
Technologies for dynamic wireless noise mitigation include a computing device having a wireless modem and one or more antennas. The computing device activates one or more components of the computing device, monitors platform activity, and measures wireless noise received by the antennas. The computing device trains a noise prediction model based on the platform activity and the measured noise. The computing device may monitor platform activity and predict a noise prediction with the noise prediction model based on the monitored activity. The computing device may mitigate wireless noise received by the wireless antennas based on the noise prediction. The computing device may provide the noise prediction to the wireless modem. Other embodiments are described and claimed.
Abstract:
Embodiments of wireless antenna array systems to achieve three-dimensional beam coverage are described herein. Other embodiments may be described and claimed.
Abstract:
Described herein are techniques related one or more systems, apparatuses, methods, etc. for integrating a near field communications (NFC) coil antenna in a portable device. For example, the NFC antenna is integrated under a metal chassis of the portable device. The metal chassis and a conductive coating—that is integrated underneath the full metal chassis—are designed to include one or more slots to provide high impedance to Eddy current induced in the conductive coating.
Abstract:
Technologies for dynamic wireless noise mitigation include a computing device having a wireless modem and one or more antennas. The computing device activates one or more components of the computing device, monitors platform activity, and measures wireless noise received by the antennas. The computing device trains a noise prediction model based on the platform activity and the measured noise. The computing device may monitor platform activity and predict a noise prediction with the noise prediction model based on the monitored activity. The computing device may mitigate wireless noise received by the wireless antennas based on the noise prediction. The computing device may provide the noise prediction to the wireless modem. Other embodiments are described and claimed.
Abstract:
Techniques related to wireless communication of an input device are described herein. An apparatus may include a display at the input device, a wireless transmission architecture, and a wireless receiver. The wireless transmission architecture is to broadcast a signal to the display, and wireless receiver to receive the broadcast signal at the display. The broadcast signal is configured to provide a power signal to initiate operations of the display, a data signal to provide content to be displayed at the display, or any combination thereof.
Abstract:
Wireless wearable devices having self-steering antennas are disclosed. A disclosed example wearable device includes an antenna to be communicatively coupled to a wireless data transceiver of a base station. The disclosed example wearable device also includes a steering mount coupled to the antenna, where the steering mount is to adjust an orientation of the antenna towards a wireless coverage zone associated with the wireless data transceiver based on a movement of the wearable device.
Abstract:
Methods, apparatus, systems and articles of manufacture to wirelessly power an unmanned aerial vehicle are disclosed. An example unmanned aerial vehicle (UAV) includes a first electrode assembly to capacitively couple to a first power cable. The example UAV includes a second electrode assembly to capacitively couple to a second power cable. The first and second electrode assemblies, when capacitively coupled to the respective first and second power cables, are to receive power from at least one of the first and second power cables. The example UAV includes a power storage circuit to store the received power.
Abstract:
Described herein are architectures, platforms and methods for dynamic re-distribution of magnetic fields in a device during near field communication (NFC) related functions or transactions and/or wireless charging.
Abstract:
Described herein are techniques related one or more systems, apparatuses, methods, etc. for reducing induced currents in a apparatus chassis. For example, a fractal slot is constructed in the apparatus chassis to reduce the induced currents, and enhance passage of magnetic fields through the apparatus chassis. In this example, the fractal slot may include a no-self loop fractal space filling curve shape to provide high impedance to the induced currents.