Abstract:
In one embodiment, a processor can operate in multiple modes, including a direct execution mode and an emulation execution mode. More specifically, the processor may operate in a partial emulation model in which source instruction set architecture (ISA) instructions are directly handled in the direct execution mode and translated code generated by an emulation engine is handled in the emulation execution mode. Embodiments may also provide for efficient transitions between the modes using information that can be stored in one or more storages of the processor and elsewhere in a system. Other embodiments are described and claimed.
Abstract:
A hydraulic circuit for a vehicle having at least one selectively actuated hydraulic assist motor. The hydraulic circuit includes a first loop that includes, in serial order, a first hydraulic pump, a first hydraulic line, at least one hydraulic motor and a second hydraulic line. A second hydraulic pump and a third valve is used to control the flow of low pressure fluid from the second pump to the hydraulic motor casing. The low pressure fluid through the third valve maintains the motor pistons retracted when the motor is not being used. For actuating the motor, the third valve is actuated for disconnecting the second pump and relieving pressure from the motor casing. Low pressure is then provided to the first and second lines for extending the motor pistons. The first and second valves are then actuated for isolating the first and second lines from one another, and the first pump is used to power the motor. The first, second and third valves are advantageously solenoid cartridge valves.
Abstract:
A roll-on/roll-off, aircraft-borne sensor pod deployment system having an operator station and a sensor pallet system and method of using same. The operator station has a base platform, a shelter box mounted on the base platform for accommodating a human operator, and a computer installed inside the shelter box. The sensor pallet system has a base platform, a linear system mounted on the base platform, a rotational system mounted on the linear system, a mechanical arm attached to the rotational system, a sensor pod attached to the mechanical arm, and an electrical control system that provides power to the deployment system and controls movements of the sensor pallet system. In operation, the sensor pod can be retracted into a compact, stowing position, or extended out an opening in the aircraft for an unobstructed field of view. The deployment system optionally includes an apparatus and method for sealing the aircraft opening.
Abstract:
A chimney assembly is provided for an electrical switching apparatus, such as a circuit breaker including a housing and a number of poles. The chimney assembly includes a frame, an intake, a duct and an exhaust. A first side of the frame is coupled to the circuit breaker housing proximate the poles of the circuit breaker, and the intake and exhaust are respectively disposed at first and second ends of the frame. A first portion of the duct is coupled to the circuit breaker housing above the poles, and a second portion is coupled to the first side of the frame. The chimney assembly draws a volume of air through the intake into the circuit breaker housing, circulates the volume of air through the poles of the circuit breaker, and discharges the volume of air out of the circuit breaker housing through the duct and the exhaust.
Abstract:
An electrical enclosure includes a housing having a front, a back, a plurality of sides, a plurality of sections disposed between the sides, at least one electrical apparatus, and a plurality of electrical bus members electrically connected to the electrical apparatus. The electrical apparatus is disposed within a first one of the sections of the housing, and a substantial portion of the electrical bus members are collectively disposed within a second one of the sections of the housing. At least the second one of the sections and the substantial portion of the electrical bus members collectively disposed therein are accessible from the front of the housing, regardless of whether the electrical apparatus is within or removed from the first one of the sections of the housing. An electrical bus assembly is also disclosed.
Abstract:
An electrical enclosure includes a housing having a front, a back, a plurality of sides, a plurality of sections disposed between the sides, at least one electrical apparatus, and a plurality of electrical bus members electrically connected to the electrical apparatus. The electrical apparatus is disposed within a first one of the sections of the housing, and a substantial portion of the electrical bus members are collectively disposed within a second one of the sections of the housing. At least the second one of the sections and the substantial portion of the electrical bus members collectively disposed therein are accessible from the front of the housing, regardless of whether the electrical apparatus is within or removed from the first one of the sections of the housing. An electrical bus assembly is also disclosed.
Abstract:
A maintenance-free electrical bus assembly is provided for a switchgear cabinet. The maintenance-free electrical bus assembly is coupled to a switchgear device in the cabinet, and includes electrical bus members, at least one bus joint comprising an electrical connection of two or more electrical bus members, and a fastener assembly fastening the bus joint and maintaining the electrical connection between the electrical bus members thereof. The fastener assembly includes at least one first fastening element having a plurality of first threads, and at least one second fastening element having a plurality of second threads. The second threads threadably engage the first threads of a corresponding first fastening element, in order to perpetually secure the first threads and the corresponding first fastening element, and to resist undesirable loosening of the bus joint once the fastener assembly has been fastened. Thus, inaccessible bus joints within the cabinet do not need to be inspected.
Abstract:
A structure and method for operating a directional control system for vehicle headlights that is capable of altering the directional aiming angles of the headlights to account for changes in the operating conditions of the vehicle. One or more operating condition sensors may be provided that generate signals that are representative of a condition of the vehicle, such as road speed, steering angle, pitch, suspension height, rate of change of road speed, rate of change of steering angle, rate of change of pitch, and rate of change of suspension height of the vehicle. A controller is responsive to the sensor signal for generating an output signal. An actuator is adapted to be connected to the headlight to effect movement thereof in accordance with the output signal. The controller can include a table that relates values of sensed operating condition to values of the output signal. The controller is responsive to the sensor signal for looking up the output signal in the table.
Abstract:
An arc-resistant switchgear cabinet includes a frame disposed on a floor and a door movably mounted on the frame. The frame includes a floor plate that is disposed against the floor and that includes a plurality of pins extending vertically upward from the floor plate. The door includes a plurality of corresponding receptacles into which the pins are received when the door is in a secured position. The pins in the receptacles resist the lower end of the door from moving in a horizontal direction away from the frame in the event of an arcing fault. A pair of bolts additionally fasten the lower comers of the door to the frame. The switchgear cabinet further includes interlocking tabs formed on the frame and on the door that overlap one another when the door is in the secured position.
Abstract:
A hockey puck has a generally cylindrical body having an upper face, a lower face and a circumferential wall with a generally spherical puck element secured centrally within the body and being rotatable with respect to the puck body. In a preferred embodiment, the generally spherical puck element has a weight greater than that of the body and a diameter greater than the distance between the upper face and lower face. The generally spherical puck element is secured within an inner member which in turn has a ring disposed radially outwardly thereof and secured to the inner member. The puck is structurally designed to have the generally spherical puck element have translational and rotational kinetic energy while the body will have translational or translational and rotational kinetic energy. This results an enhanced ability to maintain the puck on the desired path despite roughness of the surface on which it is moving or certain types of impact with other objects.