Abstract:
The present invention provides a helical slow-wave structure, including a helix, a metal barrel and several supporting rods. The plurality of supporting rods may be inserted into the lines of the grooves tightly, this increases the contact area between the helix and the plurality of supporting rods. With a proper assembly method, the thermal contact resistance between helix and supporting rod may be decreased. So, the invention may enhance the capability of transferring the heat out of the helical slow-wave structure. The helix may have higher heat capacity, therefore, the helical slow-wave structure may become more firm, and more reliable.
Abstract:
A method and apparatus for receiving data is provided. A data receiving terminal processes each received file block as follows: performing forward error correction decoding for Tb bit sequences to be decoded of the file block respectively, obtaining Tb decoded information bit sequences with a length of K, wherein, the ith bit sequence to be decoded is composed of the ith bits of each unerased information file segment and check file segment of the file block in sequence according to the sequence of the information file segments and the check file segments; combing K decoded information file segments of the file block in sequence to generate original file data of the file block, wherein the Mth decoded information file segment is composed of the Mth bits of the Tb decoded information bit sequences in sequence according to the sequence of the information bit sequences.
Abstract:
The present disclosure provides a transmission power control method for a physical uplink shared channel, including: when there is only uplink control information but no uplink shared channel data sent over the physical uplink shared channel, the transmission power of the physical uplink shared channel is set according to the total number of bits contained in a channel quality indication signaling and its corresponding cyclic redundancy check as well as an amplitude offset. The present disclosure also provides a transmission power control system for a physical uplink shared channel. The method and system described in the present disclosure can ensure the overall performance of a system.
Abstract:
The present invention provides a device and method for interleaved encoding RS code, the RS code used being RS (N, K, S). The method comprises: firstly, writing the data in the data packets to be RS interleaved encoded into the information region of the RS code byte interleaver column-by-column in turn; then, constructing the data of each row of the check region based on the data written into the information region; finally, performing cyclic shifting processing on the data of the check region, and reading out the data of the check region in the RS code byte interleaver column-by-column in turn. The present invention can be used to improve the performance of the entire data packet outputted, thereby enhancing the reliability of the data link layer, by evenly spreading the areas with a filled value of 0 in the last column of the information region that is filled with valid information and by performing cyclic shifting processing on the data of the check region so that the data of that region offer larger time span and good diversity effect when outputted.
Abstract:
The present invention provides a method for decoding a low density generator matrix code (LDGC), applied for decoding transmitted original information bits encoded in LDGC code. The method comprises the following steps: A: deleting a part erased by a channel in a received code word sequence R filled by a known bit sequence to obtain an erased code word sequence Re, and deleting the rows corresponding to the erased part from a transposed matrix GIdgct of a generator matrix of the LDGC to obtain the erased generator matrix Ge; B: permuting columns of Ge such that an M-order square matrix with an element in the 0th row and 0th column being a vertex is a triangular matrix to obtain the permuted generator matrix Gf; and C: calculating the original information bits using Gf and Re.
Abstract:
A spring supported lower clamper for direct tensile test, comprising a lower connection member, a lower end cap for holding a sample, a lower chain for connecting the lower connection member with the lower end cap, and spring-type supporting provisions for supporting a broken-apart lower part of the sample formed during the tensile test and the lower end cap. During the tensile test, the sample, the lower end cap and the lower chain are supported by the spring-type supporting provisions. Thus the sample can be prevented from being broken abruptly when a tensile force in the sample reaches its maximum level, and the mechanical behavior after the maximum tensile force is reached can be measured.
Abstract:
A local positioning system is proposed for wirelessly locating an object using existing features within a static environment, such as walls, as the references for determining the position of the system. An antenna 16 attached to the object transmits RF signals which are reflected by the surroundings. During a training mode, the reflected signals are used to train a neural network 22, 43 to map the position of the object to the characteristics of the reflected signals. During a working mode, the trained neural network is to identify the position of the object based on reflected signals in working mode. Optionally, the reflected signals may be subject to a clustering process before input to the neural network.
Abstract:
Methods and an apparatus for dynamic best fit compilation of mixed mode instructions are provided. In one embodiment, a provided method includes receiving a non-native software instruction at a device, generating a first native software instruction from a first instruction set based on the non-native software instruction, the generation of the first native software instruction occurring at the device, executing the first native software instruction at the device, generating a second native software instruction from a second instruction set based on the non-native software instruction, the generation of the second native software instruction occurring at the device, and executing the second native software instruction at the device.
Abstract:
Data is recovered from a write-once optical disk having data written on it. The disk is composed of a substrate and a dye layer. The data was originally written to the dye layer as patterns of pits and lands, but the dye layer is subject to corruption due to ageing so that the data cannot be read by a conventional read process. The data is recovered by exposing the surface of the substrate, measuring deformations to that layer caused by the write process, and extracting the data from the measured deformations by classifying the measured deformations into deformations typical of predetermined patterns of pits and lands.
Abstract:
A method for transmitting data of hotspot cell coverage includes: a base station adjusts a Modulation and Coding Scheme (MCS) table allowing the same to satisfy a 256 QAM modulation scheme, and acquires layer 1 Transport Block Size (TBS) when the modulation scheme is 256 QAM; on the basis of NPRB, ITBS and the number of Transport Block (TB) mapping layers, the base station determines the TBS currently transmitting data, and transmits data on the basis of the TBS. Also provided is a device and base station for transmitting data. Employment of the method, device, and base station for transmitting the data of hotspot cell coverage of embodiments of the disclosure allows for optimized modulation scheme for the same to support up to 256 QAM, and for improved system throughput, thus solving the problem in hotspot cell coverage of system transmission speed not capable of satisfying actual demand.