摘要:
This document discusses, among other things, systems, devices, and methods measure an impedance and, in response, adjust an atrioventricular (AV) delay or other cardiac resynchronization therapy (CRT) parameter that synchronizes left and right ventricular contractions. A first example uses parameterizes a first ventricular volume against a second ventricular volume during a cardiac cycle, using a loop area to create a synchronization fraction (SF). The CRT parameter is adjusted in closed-loop fashion to increase the SF. A second example measures a septal-freewall phase difference (PD), and adjusts a CRT parameter to decrease the PD. A third example measures a peak-to-peak volume or maximum rate of change in ventricular volume, and adjusts a CRT parameter to increase the peak-to-peak volume or maximum rate of change in the ventricular volume.
摘要:
An apparatus comprises an implantable cardiac signal sensing circuit that provides an electrical cardiac signal representative of cardiac activity of a subject, an implantable therapy circuit that delivers electrical pacing stimulation energy to a heart of a subject, and a controller circuit. The controller circuit includes a chronotropic incompetence detection circuit that initiates pacing of an atrium of the subject at a rate higher than a device-indicated rate or a sensed intrinsic rate, monitor the AV interval, initiates an increase in the pacing rate while continuing the monitoring of the AV interval, calculates a change in AV intervals between a highest paced rate used in the monitoring and a lowest paced rate used in the monitoring, and indicates that the AV intervals are evidence of chronotropic incompetence when the calculated change in the AV intervals exceeds a specified threshold AV interval change value.
摘要:
An A-H delay can be specified, such as by computing the A-H delay using a measured cardiovascular physiologic parameter. The A-H delay can be used for specifying timing between a paced or sensed atrial contraction and a His-bundle pacing time.
摘要:
Vector selection is automatically achieved via a thoracic or intracardiac impedance signal collected in a cardiac function management device or other implantable medical device that includes a test mode and a diagnostic mode. During a test mode, the device cycles through various electrode configurations for collecting thoracic impedance data. At least one figure of merit is calculated from the impedance data for each such electrode configuration. In one example, only non-arrhythmic beats are used for computing the figure of merit. A particular electrode configuration is automatically selected using the figure of merit. During a diagnostic mode, the device collects impedance data using the selected electrode configuration. In one example, the figure of merit includes a ratio of a cardiac stroke amplitude and a respiration amplitude. Other examples of the figure of merit are also described.
摘要:
Vector selection is automatically achieved via a thoracic or intracardiac impedance signal collected in a cardiac function management device or other implantable medical device that includes a test mode and a diagnostic mode. During a test mode, the device cycles through various electrode configurations for collecting thoracic impedance data. At least one figure of merit is calculated from the impedance data for each such electrode configuration. In one example, only non-arrhythmic beats are used for computing the figure of merit. A particular electrode configuration is automatically selected using the figure of merit. During a diagnostic mode, the device collects impedance data using the selected electrode configuration. In one example, the figure of merit includes a ratio of a cardiac stroke amplitude and a respiration amplitude. Other examples of the figure of merit are also described.
摘要:
A pacing system for providing optimal hemodynamic cardiac function for parameters such as ventricular synchrony or contractility (peak left ventricle pressure change during systole or LV+dp/dt), or stroke volume (aortic pulse pressure) using system for calculating atrio-ventricular delays for optimal timing of a ventricular pacing pulse. The system providing an option for near optimal pacing of multiple hemodynamic parameters. The system deriving the proper timing using electrical or mechanical events having a predictable relationship with an optimal ventricular pacing timing signal.
摘要:
Optimizing cardiac preload based on measured pulmonary artery pressure involves varying, for each repetition of an acute burst protocol, a parameter of pacing applied to a patient's heart during the acute burst protocol. Pulmonary artery pressure is measured during the repetitions of the acute burst protocol. The length of the repetitions is chosen so that the patient's baroreflex system does not adjust to the varied parameter of pacing during the repetitions of the acute burst protocol. An optimum ventricular preload is determined based on the measured pulmonary artery pressure. Pacing therapy is provided using a value of the parameter that is selected based on the determination of optimum ventricular preload.
摘要:
A method or system for computing and/or setting optimal cardiac resynchronization pacing parameters as derived from intrinsic conduction data is presented. The intrinsic conduction data includes intrinsic atrio-ventricular and interventricular delay intervals which may be collected via the sensing channels of an implantable cardiac device. Among the parameters which may be optimized in this manner are an atrio-ventricular delay interval and a biventricular offset interval. In one of its aspects, the invention provides for computing optimum pacing parameters for patients having some degree of AV block or with atrial conduction deficits. Another aspect of the invention relates to a pacing mode and configuration for providing cardiac resynchronization therapy to patients with a right ventricular conduction disorder.
摘要:
The present invention provides for a rheology control agent that includes a following compound represented by the following formula: wherein A, B, C and D equal CH2, CHR, NH, or O, and A, B, C and D may be the same or different and at least one of A and B equals NH and at least one of C and D equals NH; and wherein R1, R2, and R3 may be the same or different and represent a linear, branched, hyper-branched, or dendritic ether, polyether or hydrocarbon based chain, optionally forming at least one carbon-based ring, being saturated or unsaturated and R2 represents linear or branched alkylenes, ethers, polyethers, or polyester linkages and at least one of R1, R2, and R3 comprises an ester group or an amide group which is branched off from the main chain; excluded from Formula (1) is a compound wherein R2 is CH2—CH2—CH2—CH2—CH(C(O)OCH3), A, B, C, and D are equal to NH and R1 and R3 are both equal to a linear octyl hydrocarbon chain; the rheology control agent is suitable for solvent-borne and water-borne coating composition having improved rheology control useful for OEM refinishing or repainting the exterior of automobile and truck bodies and parts thereof.
摘要:
The present invention is directed to a rheology control agent for coating compositions. The rheology control agent includes a compound having the Formula (II) including isomers or mixtures of isomers thereof: wherein R, R9, R10, m and n are described in the specification. The coating compositions containing the rheology control agent have improved rheology control on application and are useful for OEM, refinishing or repainting the exterior of automobile and truck bodies and parts thereof.