Abstract:
The invention relates to a method and an X-ray detector (100) for detecting incident X-ray photons (X). The X-ray detector (100) comprises at least one sensor unit (105) in which X-ray photons (X) are converted into sensor signals (s) and at least one flux sensor (104) for generating a flux signal (f) related to the flux of photons (X). The sensor signals (s) are corrected based on the flux signal (f). In a preferred embodiment, the sensor signals (s) represent a spectrally resolved pulse counting. The flux sensor (104) may be integrated into an ASIC (103) that is coupled to the sensor unit (105).
Abstract:
The invention relates to a detection apparatus (12) for detecting photons. The detection apparatus comprises a pile-up determining unit (15) for determining whether detection signal pulses being indicative of detected photons are caused by a pile-up event or by a non-pile-up event, wherein a detection values generating unit (16) generates detection values depending on the detection signal pulses and depending on the determination whether the respective detection signal pulse is caused by a pile-up event or by a non-pile-up event. In particular, the detection values generating unit can be adapted to reject the detection signal pulses caused by pile-up events while generating the detection values. This allows for an improved quality of the generated detection values.
Abstract:
Data in X-ray images of a medical device is processed in order to reduce vibration artifacts in differential phase contrast imaging. A proportionality factor between an object induced phase shift for a first x-ray energy bin and an object induced phase shift for a second x-ray energy bin is provided. At least one of a dark field signal and an object induced phase shift is determined from a detected intensity value of a pixel for the first energy bin and a detected intensity value of the pixel for the second energy bin using the proportionality factor.
Abstract:
The invention relates to a subject support device (1) to be used in a projection data acquisition apparatus (2) for acquiring projection data of a subject (3). The subject support device comprises a support component (4) providing a support surface (5) for supporting the subject while acquiring the projection data, a diffraction grating (6) for diffracting x-rays, and a moving unit (7, 8) for moving the support component and the diffraction grating relative to each other. This relative movement can allow for a movement of the support component such that the subject is moved through x-rays (16) for determining projection data of different parts of the subject, while the diffraction grating can still be traversed by the x-rays. These projection data can be used for generating a relatively large phase-contrast and/or dark-field projection image.
Abstract:
The present invention relates to a modulation of X-ray radiation for the purposes of imaging an object of interest. For the modulation, the X-ray radiation provided by an X-ray source (12) is in part totally reflected by a mirror (20). Thus, an X-ray radiation at an object receiving space (16) is formed by an unreflected X-ray radiation (24) and a reflected X-ray radiation (26). The mirror (20) is displaceable by an actuator (28), such that the intensity of the reflected X-ray radiation (26) can be adjusted, in particular to a density of the object to be imaged.
Abstract:
The present invention relates to determining baseline shift of an electrical signal generated by a photon detector (102) of an X-ray examination device (101). For this purpose, the photon detector comprises a processing unit (103) that is configured to determine a first crossing frequency of a first pulse height threshold by the electrical signal generated by the photon detector. The first pulse height threshold is located at a first edge of a noise peak in the pulse height spectrum of the electrical signal.
Abstract:
The invention relates a photon counting device and method for counting photon interactions in a piece of converter material and addressing the issue of charge sharing. The occurrence of a charge sharing event is already detected upon the onset of the pulse, taking into consideration an onset of a pulse in a neighboring pixel within a preferably very short coincidence window. According to the invention, it is detected whether a pulse is being processed and one or more neighboring pixels are scouted to decide whether a simultaneous interaction has been registered within a very short coincidence window.
Abstract:
Apparatus and related method for dark-field imaging. The apparatus operates on projective intensities detected at a detector in different energy channels. An energy weighting is used to improve the signal to noise ratio. The model operates in a logarithmic domain.
Abstract:
An X-ray detector comprises a directly converting semiconductor layer having a plurality of pixels for converting incident radiation into electrical measurement signals with a band gap energy characteristic of the semiconductor layer, wherein said incident radiation is x-ray radiation emitted by an x-ray source or light omitted by at least one light source. An evaluation unit calculates evaluation signals per pixel or group of pixels from first electrical measurement signals generated when light from said at least one light source at a first intensity is coupled into the semiconductor layer, and second electrical measurement signals generated when light from said at least one light source at a second intensity is coupled into the semiconductor layer. A detection unit determines detection signals from electrical measurement signals generated when x-ray radiation is incident onto the semiconductor layer, and a calibration unit calibrates the detection unit on the basis of the evaluation signals.
Abstract:
The invention relates to a detection apparatus (12) for detecting photons. The detection apparatus comprises a pile-up determining unit (15) for determining whether detection signal pulses being indicative of detected photons are caused by a pile-up event or by a non-pile-up event, wherein a detection values generating unit (16) generates detection values depending on the detection signal pulses and depending on the determination whether the respective detection signal pulse is caused by a pile-up event or by a non-pile-up event. In particular, the detection values generating unit can be adapted to reject the detection signal pulses caused by pile-up events while generating the detection values. This allows for an improved quality of the generated detection values.