Abstract:
One disclosure of the present specification provides an interference cancellation reception method. The interference cancellation reception method can comprise the steps of: cancelling an interference caused by a cell-specific reference signal (CRS) from a neighboring cell which is mixed within a signal received from a serving cell; blind-detecting a parameter related to a demodulation reference signal (DMRS) so as to discover whether the signal from the neighboring cell mixed within the received signal is a data channel modulated on the basis of the DMRS; cancelling an interference between the detected DMRS signal and a DMRS signal of the serving cell when the DMRS is detected on the basis of the DMRS-related parameter; blind-detecting a modulation order for the data channel from the neighboring cell; and receiving only the signal from the serving cell through the interference cancellation by the data channel from the neighboring cell on the basis of the modulation order.
Abstract:
One embodiment of the present specification provides a method by which user equipment (UE) transmits an uplink signal according to a spectrum emission mask (SEM). The method comprises a step of transmitting the uplink signal on a plurality of carriers when an RF unit of the UE is set to use inter-band carrier aggregation. Here, when the frequency range of a first SEM of a first carrier overlaps the frequency range of a second SEM of a second carrier, any one SEM allowing a higher power spectral density (PSD) can be selected and applied.
Abstract:
Disclosed in the present invention are a method for estimating a channel in a wireless access system in which a macro cell and a pico cell coexist, and an apparatus for same. More specifically, the present invention comprises the steps of: determining whether a cell-specific reference signal (CRS) that is inserted into a subframe of a pico cell, which corresponds to a multicast broadcast signal frequency network (MBSFN) almost blank subframe (ABS), overlaps with a CRS that is inserted into an MBSFN ABS of the macro cell, when the MBSFN ABS is transmitted from the macro cell; estimating the channel by using a CRS from the pico cell that remains after excluding the CRS that overlaps with the CRS of the macro cell; and decoding the channel which is received from the subframe of the pico cell by using a channel estimation value.
Abstract:
One embodiment of the present specification discloses a receiving method. The receiving method comprises the steps of: cancelling interference caused by a cell-specific reference signal (CRS) of a neighboring cell from a bit string received from a serving cell; determining weight to be applied to the bit string; applying the determined weight to the bit string; and decoding the bit string to which the weight is applied. In the step of determining the weight, it is possible to determine the weight to be applied depending on whether or not CRSs collide with each other between the serving cell and the neighboring cell that causes the interference.
Abstract:
A method and base station for transmitting information for cell measurements, and a method and user equipment for performing cell measurements are discussed. The method according to one embodiment includes transmitting, by the base station, signals according to an almost blank subframe pattern; and transmitting, by the base station, information indicating a first time domain measurement resource restriction pattern and a second time domain measurement resource restriction pattern. The almost blank subframe pattern indicates which subframes the base station is configuring. The first time domain measurement resource restriction pattern indicates which subframe is one or more first subframes configured for reference signal received power (RSRP) or reference signal received quality (RSRQ) measurements, and the second time domain measurement resource restriction pattern indicates which subframe is one or more second subframes configured for RSRP or RSRQ measurements.
Abstract:
The present invention relates to a method of providing, by a UE served in a small-scale cell, information about surrounding UEs in a wireless communication system in which a macro cell and the small-scale cell coexist. The method can include the steps of: carrying out a handover from the macro cell to the small-scale cell; after completion of the handover, overhearing a signal transmitted by the UE; measuring signal intensities of the surrounding UEs; and, if the signal intensities meet predefined conditions, delivering information about the surrounding UEs to the small-scale cell.
Abstract:
One disclosure of the present specification provides a method for performing a measurement. The method may comprise: receiving, from a serving cell, a first measurement subframe pattern for the serving cell and assistance information on a cell-specific reference signal (CRS) of a first neighboring cell and a second neighboring cell; and receiving, from the serving cell, a second measurement subframe pattern for the first and second neighboring cells. Here, both the serving cell and the first neighboring cell are aggressor cells against a victim cell which is the second neighboring cell, and the received second measurement subframe pattern may be set based on an almost blank subframe (ABS) pattern, when a CRS of the serving cell collides with the CRS of the second neighboring cell but the CRS of the first neighboring cell does not collide with the CRS of the second neighboring cell.
Abstract:
The present invention relates to a method and terminal for detecting a physical hybrid-ARQ indicator channel (PHICH) in a wireless access system that supports enhanced inter-cell interference coordination. In particular, the method includes: determining whether the PHICH exists in only a 0th orthogonal frequency division multiplexing (OFDM) symbol if a subframe transmitted by a neighboring base station is an almost blanked subframe (ABS); determining whether a common reference signal (CRS) of the neighboring base station collides with a CRS of a serving base station if the PHICH exists outside of the 0th OFDM symbol; determining whether CRS power of the neighboring base station does not collide with the CRS of the serving base station; and determining whether an acknowledgement/negative-acknowledgement (ACK/Negative-ACK) is detected by replacing a symbol of the PHICH, overlapped with the CRS power of the neighboring base station is greater than the preset threshold.
Abstract:
A method, performed by a user equipment (UE), is provided for determining uplink transmission power. A radio frequency (RF) unit is configured to use for an uplink transmission a frequency range of 1980 MHz through 2010 MHz or 1920 MHz through 2010 MHz. The UE receives a value of an additional maximum power reduction (A-MPR) from a serving base station (BS) adjacent to a neighboring BS for serving another UE using for an uplink transmission a frequency range of 2010 MHz through 2025 MHz. An uplink signal is transmitted at an uplink transmission power calculated by using the value of the A-MPR. The value of the A-MPR is 11 dB or 15 dB.
Abstract:
The present invention relates to a method by which a terminal measures interference in a wireless communication system in which a macro cell and a small-scale cell coexist. The interference measurement method can include a step in which a terminal receives setting information for interference measurement (IM). Here, the setting information for the IM includes at least two settings, each setting is defined in a resource element (RE) unit, the first of the two settings is for measuring interference from other neighboring cells besides the macro and small-scale cells, and the second is for measuring interference from the macro cell. The interference measurement method may further include: measuring interference by using setting information for the IM; and feeding back channel quality obtained by using the measured interference value.