Abstract:
Multicolor holograms using gelatin as the binder and having interference fringes lying in layers parallel to the substrate, the colors of which are visible by reflection in incident natural light, by treating the holographic material which has been holographically exposed and processed to produce a hologram therein, by applying to the selected areas of the gelatin which contains the interference fringes a solution of a compound which causes the interference fringes to separate permanently and produce a bathochromic shift in the replay wavelength.
Abstract:
The web of the invention can comprise a super absorbent layer that can act as an moisture sensitive fuel shut-off valve, absorbent, adsorbant or reactant. The web of the invention can comprise a super absorbent fabric or layer made of a superabsorbent particle or fiber. Fluid, gas or liquid, that flows through or by the assemblies of the invention can have any gas, liquid or solid material dispersed or dissolved in the fluid interact with the super absorbent particulate. The structures of the invention can act simply as flow-by reactive, absorptive, or adsorptive layers with no filtration properties, or the structures of the invention can be assembled into filters.
Abstract:
The present invention provides a system and method for affiliating a wireless device with a wireless local area network (WLAN). An embodiment of the method of this invention comprises establishing, at a control node of the WLAN, access frequency(s) for affiliation with the WLAN. The control node periodically provides a beacon frame on the access frequency(s) that indicates the timing of affiliation with the WLAN. The wireless device determines the access frequency(s) for affiliating with the WLAN and the timing of affiliation with the WLAN based on the beacon frame. The wireless device provides self identification information via the access frequency during the beacon frame. This allows the control node to determine the access privileges of the wireless device based on the identification information. Finally, the control node affiliates the wireless device with an initial access channel from a set of access channels in accordance with the access privileges.
Abstract:
The web of the invention can comprise a super absorbent layer that can act as an moisture sensitive fuel shut-off valve, absorbent, adsorbant or reactant. The web of the invention can comprise a super absorbent fabric or layer made of a superabsorbent particle or fiber. The web can comprise a nanofiber layer having dispersed within the nanofiber layer a super absorbent particulate and optionally a second particulate material that can act as an absorbent, adsorbant or reactant. Fluid, gas or liquid, that flows through or by the assemblies of the invention can have any gas, liquid or solid material dispersed or dissolved in the fluid interact with the super absorbent particulate. If needed these materials can also react with, be absorbed by, or adsorbed onto, the active particulate within the nanofiber layer. The structures of the invention can act simply as flow-by reactive, absorptive, or adsorptive layers with no filtration properties, or the structures of the invention can be assembled into filters that can filter particulate from a mobile fluid in a flow-through mode while simultaneously reacting, absorbing, or adsorbing materials from the mobile fluid.
Abstract:
The present invention provides a method for allocating channels in a wireless local area network (WLAN) among a plurality of clients. This method involves first assigning at least one client of the plurality of clients to a channel of a set of active channels. Next, for each client the access time is determined based on an access time factor. Assigning individual clients to channels further involves determining available channel capacity of the set of active channels and the desired channel consumption of the multiple clients. When the available channel capacity is equal to or greater than the desired channel consumption, multiple clients may be assigned to multiple channels. However, when the available channel capacity is less than the desired channel consumption, the desired channel consumption of the multiple clients is scaled to produce a scaled channel consumption wherein multiple clients are assigned to channels based on the available channel capacity of each of the set of channels and the scaled channel consumption.
Abstract:
The web of the invention can comprise a super absorbent layer that can act as an moisture sensitive fuel shut-off valve, absorbent, adsorbant or reactant. The web of the invention can comprise a super absorbent fabric or layer made of a superabsorbent particle or fiber. The web can comprise a nanofiber layer having dispersed within the nanofiber layer a super absorbent particulate and optionally a second particulate material that can act as an absorbent, adsorbant or reactant. Fluid, gas or liquid, that flows through or by the assemblies of the invention can have any gas, liquid or solid material dispersed or dissolved in the fluid interact with the super absorbent particulate. If needed these materials can also react with, be absorbed by, or adsorbed onto, the active particulate within the nanofiber layer. The structures of the invention can act simply as flow-by reactive, absorptive, or adsorptive layers with no filtration properties, or the structures of the invention can be assembled into filters that can filter particulate from a mobile fluid in a flow-through mode while simultaneously reacting, absorbing, or adsorbing materials from the mobile fluid.
Abstract:
A new and distinct variety of Fig tree denominated ‘Sequoia’ is described. The new Sequoia fig variety is a high quality, medium to large size, yellow-green skinned fig of the “common” type, developed for use in the fresh market fig industry. The Sequoia tree is of medium vigor and size and is a regular and productive bearer, developing both a Breba and second crop in most years. The Sequoia has a tight ostiole that substantially restricts the entry of most insects into the interior of the fig fruit. In comparison with the “Tena” parent cultivar, the Sequoia is substantially larger in size and has a more prolific Breba crop. The larger size of the Sequoia allows it to be harvested later into the fall when the decreased size of other cultivars such as Tena precludes their use in the fresh market.
Abstract:
A Negative Thermal Expansion system (NTEs) device for TCE compensation or CTE compensation in elastomer composites and conductive elastomer interconnects in microelectronic packaging. One aspect of the present invention provides a method for fabricating micromachine devices that have negative thermal expansion coefficients that can be made into a composite for manipulation of the TCE of the material. These devices and composites made with these devices are in the categories of materials called “smart materials” or “responsive materials.” Another aspect of the present invention provides microdevices comprised of dual opposed bilayers of material where the two bilayers are attached to one another at the peripheral edges only, and where the bilayers themselves are at a minimum stress conditions at a reference temperature defined by the temperature at which the bilayers are formed. These devices have the technologically useful property of volumetrically expanding upon lowering of the device temperature below the reference or processing temperature.
Abstract:
A system is provided for transmitting data to a plurality of devices. A data source receives data from a video broadcasting source, such as a digital television provides, through a data cable. The data source identifies devices to receive particular sets of data, such as particular programs, from the data cable. The data source identifies particular settings for transmitting to particular devices. The data source adjusts a transmission power to a first device to efficiently provide data reliably to the first device. The data source can assign more or less power for transmitting data to the first device. The data source provides data to the source device using a first data channel. The data source provides data to a second device using a second data channel. The data source receives acknowledgements and control information from the first device and the second device using the second data channel.
Abstract:
In accordance with the present invention, a write behind controller receives control information from a display device controller in order to determine a current location available in a frame buffer for receiving information. Write accesses of the frame buffer by a rendering engine are prohibited if the access is to an area below a currently available location of the frame buffer. Generally, the rendering engine will be stalled when the requested address location has not yet displayed its data. Subsequently, the write access to the frame buffer is allowed when location has been rastered.