摘要:
The web of the invention can comprise a super absorbent layer that can act as an moisture sensitive fuel shut-off valve, absorbent, adsorbent or reactant. The web of the invention can comprise a super absorbent fabric or layer made of a superabsorbent particle or fiber. The web can comprise a nanofiber layer having dispersed within the nanofiber layer a super absorbent particulate and optionally a second particulate material that can act as an absorbent, adsorbent or reactant. Fluid, gas or liquid, that flows through or by the assemblies of the invention can have any gas, liquid or solid material dispersed or dissolved in the fluid interact with the super absorbent particulate. If needed these materials can also react with, be absorbed by, or adsorbed onto, the active particulate within the nanofiber layer. The structures of the invention can act simply as flow-by reactive, absorptive, or adsorptive layers with no filtration properties, or the structures of the invention can be assembled into filters that can filter particulate from a mobile fluid in a flow-through mode while simultaneously reacting, absorbing, or adsorbing materials from the mobile fluid.
摘要:
The web of the invention can comprise a super absorbent layer that can act as an moisture sensitive fuel shut-off valve, absorbent, adsorbant or reactant. The web of the invention can comprise a super absorbent fabric or layer made of a superabsorbent particle or fiber. The web can comprise a nanofiber layer having dispersed within the nanofiber layer a super absorbent particulate and optionally a second particulate material that can act as an absorbent, adsorbant or reactant. Fluid, gas or liquid, that flows through or by the assemblies of the invention can have any gas, liquid or solid material dispersed or dissolved in the fluid interact with the super absorbent particulate. If needed these materials can also react with, be absorbed by, or adsorbed onto, the active particulate within the nanofiber layer. The structures of the invention can act simply as flow-by reactive, absorptive, or adsorptive layers with no filtration properties, or the structures of the invention can be assembled into filters that can filter particulate from a mobile fluid in a flow-through mode while simultaneously reacting, absorbing, or adsorbing materials from the mobile fluid.
摘要:
The web of the invention can comprise a super absorbent layer that can act as an moisture sensitive fuel shut-off valve, absorbent, adsorbant or reactant. The web of the invention can comprise a super absorbent fabric or layer made of a superabsorbent particle or fiber. The web can comprise a nanofiber layer having dispersed within the nanofiber layer a super absorbent particulate and optionally a second particulate material that can act as an absorbent, adsorbant or reactant. Fluid, gas or liquid, that flows through or by the assemblies of the invention can have any gas, liquid or solid material dispersed or dissolved in the fluid interact with the super absorbent particulate. If needed these materials can also react with, be absorbed by, or adsorbed onto, the active particulate within the nanofiber layer. The structures of the invention can act simply as flow-by reactive, absorptive, or adsorptive layers with no filtration properties, or the structures of the invention can be assembled into filters that can filter particulate from a mobile fluid in a flow-through mode while simultaneously reacting, absorbing, or adsorbing materials from the mobile fluid.
摘要:
The web of the invention can comprise a super absorbent layer that can act as an moisture sensitive fuel shut-off valve, absorbent, adsorbant or reactant. The web of the invention can comprise a super absorbent fabric or layer made of a superabsorbent particle or fiber. The web can comprise a nanofiber layer having dispersed within the nanofiber layer a super absorbent particulate and optionally a second particulate material that can act as an absorbent, adsorbant or reactant. Fluid, gas or liquid, that flows through or by the assemblies of the invention can have any gas, liquid or solid material dispersed or dissolved in the fluid interact with the super absorbent particulate. If needed these materials can also react with, be absorbed by, or adsorbed onto, the active particulate within the nanofiber layer. The structures of the invention can act simply as flow-by reactive, absorptive, or adsorptive layers with no filtration properties, or the structures of the invention can be assembled into filters that can filter particulate from a mobile fluid in a flow-through mode while simultaneously reacting, absorbing, or adsorbing materials from the mobile fluid.
摘要:
The web of the invention can comprise a super absorbent layer that can act as an moisture sensitive fuel shut-off valve, absorbent, adsorbant or reactant. The web of the invention can comprise a super absorbent fabric or layer made of a superabsorbent particle or fiber. Fluid, gas or liquid, that flows through or by the assemblies of the invention can have any gas, liquid or solid material dispersed or dissolved in the fluid interact with the super absorbent particulate. The structures of the invention can act simply as flow-by reactive, absorptive, or adsorptive layers with no filtration properties, or the structures of the invention can be assembled into filters.
摘要:
The web of the invention can comprise a super absorbent layer that can act as an moisture sensitive fuel shut-off valve, absorbent, adsorbant or reactant. The web of the invention can comprise a super absorbent fabric or layer made of a superabsorbent particle or fiber. Fluid, gas or liquid, that flows through or by the assemblies of the invention can have any gas, liquid or solid material dispersed or dissolved in the fluid interact with the super absorbent particulate. The structures of the invention can act simply as flow-by reactive, absorptive, or adsorptive layers with no filtration properties, or the structures of the invention can be assembled into filters.
摘要:
A thermally bonded filtration media that can be used in high temperature conditions in the absence of any loss of fiber through thermal effects or mechanical impact on the fiber components is disclosed. The filter media can be manufactured and used in a filter unit or structure, can be placed in a stream of removable fluid, and can remove a particulate load from the mobile stream at an increased temperature range. The combination of bi-component fiber, other filter media fiber, and other filtration additives provides an improved filtration media having unique properties in high temperature, high performance applications.
摘要:
A filter and filter media configured and arranged for placement in a fuel stream is disclosed. The filter and filter media allow for filtering of liquid fuels, such as diesel fuel. In certain embodiments the filter media includes a media fiber (such as glass) and a binder fiber (such as bicomponent) that combine to create a media structure having low solidity and relatively low compressibility, and which contain a pore structure that avoids premature fouling of the filter by fuel degradation products.
摘要:
A filter and filter media configured and arranged for placement in a fuel stream is disclosed. The filter and filter media allow for filtering of liquid fuels, such as diesel fuel. In certain embodiments the filter media includes a media fiber (such as glass) and a binder fiber (such as bicomponent) that combine to create a media structure having low solidity and relatively low compressibility, and which contain a pore structure that avoids premature fouling of the filter by fuel degradation products.