Abstract:
A first wireless device including a receiver and a transmitter. The receiver includes a channel estimation module configured to receive, from a second wireless device over a communication channel, a training packet and estimate a quality of the communication channel based on the training packet, and a modulation and coding scheme (MCS) determination module configured to determine an MCS based on one or more of the training packet and the estimated quality of the communication channel. The transmitter is configured to transmit, to the second wireless device over the communication channel, an indication of the MCS determined by the MCS determination module.
Abstract:
Systems and methods for detecting data in a received multiple-input-multiple-output signal are provided. First, second, and third signals are received and form a vector y. The received signals are associated with first, second, and third data values that form a vector x. A channel matrix (H) is received, and a QR decomposition of the channel matrix is performed, such that H=QR. The vector y is transformed into a vector z according to z=QHy. A distance value between the rector z and the vector x is determined for each possible third data value. A nearest constellation point is calculated based on a first of the possible third data values. The calculating step is repeated for each of the possible third data values to generate a set of constellation point triplets. The distance values are determined using the set of constellation point triplets.
Abstract:
An apparatus for use in transmit beamforming to a beamformee having NR receive antennas. The apparatus includes a controller configured to i) construct a partial channel matrix that describes a multiple input, multiple output (MIMO) channel between a beamformer and M receive antennas, wherein M is less than NR, and ii) generate L independent vectors using the partial channel matrix, wherein L is a rank of the partial channel matrix. When a number NS of one or more streams is greater than L, the controller is further configured to i) select the L independent vectors as steering vectors to steer L streams of the plurality of streams, and ii) select NS−L orthogonal vectors in a null space of the L independent vectors as steering vectors to steer a remainder of the streams in the plurality of streams.
Abstract:
A transmitter beamforming technique for use in a MIMO wireless communication system determines a calibration factor and then applies the calibration factor to a transmit beamforming steering matrix developed using implicit beamforming. The beamforming technique first determines descriptions of both the forward and reverse channels, determines an estimate of the forward channel from the description of the reverse channel, determines right singular matrixes which model the forward channel and the estimated forward channel and then develops a calibration factor from the determined right singular matrixes. The beamforming technique then applies the determined calibration factor to a steering matrix which is calculated using an implicit beamforming technique. The use of this beamforming technique provides superior beamforming results when using implicit beamforming without having to take the necessary steps to determine a description of the actual forward channel each time a new steering matrix is to be calculated.
Abstract:
Systems and methods are provided for processing a payload portion of a received signal in a single carrier mode or a multiple carrier mode based on a portion of the received signal. A single carrier signaling portion is received at a first rate, and whether the payload portion of the signal is a single carrier signal or a multiple carrier signal is detected from the received single carrier signaling portion. The payload portion of the received signal is received at the first rate and demodulated in a single carrier mode if the detecting determines that the payload portion of the received signal is a single carrier signal, and the payload portion of the received signal is demodulated in a multiple carrier mode if the detecting determines that the payload portion of the received signal is a multiple carrier signal.
Abstract:
In a method for generating a physical layer (PHY) data unit for transmission via a communication channel, information bits to be included in the PHY data unit are encoded using a forward error correction (FEC) encoder. Also, the information bits are encoded according to a block coding scheme, where m copies of each bit are included in the information bits, and one or more bits in the m copies of each bit are flipped. The information bits are mapped to a plurality of constellation symbols, and a plurality of orthogonal frequency division multiplexing (OFDM) symbols are generated to include the plurality of constellation symbols. The PHY data unit is generated to include the plurality of OFDM symbols.
Abstract:
A method selects a codebook for transmit beamforming. The method constructs an estimated channel matrix based on a codebook, selects a channel submatrix from the estimated channel matrix, calculates a selection matrix from the channel submatrix; and assigns a steering matrix based on the selection matrix. The method may construct an estimated channel matrix, select a channel submatrix, and calculate a selection matrix for each of multiple codebooks, then select an optimal codebook. The steering matrix is assigned based on the optimal codebook. The steering matrix may be used in steering a transmitted packet. The method may also calculate a post-MIMO equalizer signal-to-noise ratio for a data stream, based on the estimated channel matrix and the selected codebook. A related system is also disclosed. Other embodiments are provided, and each of the embodiments described herein can be used alone or in combination with one another.
Abstract:
A system includes a stream parser, a multiplexer, and a plurality of transmission paths. The stream parser is configured to parse an input data stream for a packet into a plurality of spatial streams for transmission via a plurality of transmission paths over a plurality of wireless channels, respectively. The multiplexer is configured to multiplex data from the stream parser onto the plurality of transmission paths for each of the plurality of spatial streams. The plurality of transmission paths is configured to generate portions of the packet based on outputs of the multiplexer and to transmit the portions of the packet via the plurality of transmission paths over the plurality of wireless channels, respectively, using different carrier frequencies corresponding to different frequency bands for each of the portions of the packet.
Abstract:
A communication device generates a physical layer (PHY) data unit that includes a PHY preamble and one or more PHY midambles. The communication generates the PHY preamble of the PHY data unit to include i) a signal field having a subfield that indicates that the PHY data unit includes one or more PHY midambles, ii) a short training field (STF) for automatic gain control (AGC) training and synchronization at a receiver, and iii) one or more long training fields (LTFs) for determining a channel estimate at the receiver. The communication generates a data payload of the PHY data unit having i) a set of orthogonal frequency division multiplexing (OFDM) symbols, and ii) one or more PHY midambles. Each of the one or more PHY midambles includes one or more LTFs for determining an updated channel estimate. The communication device transmits the PHY data unit via a wireless communication channel.
Abstract:
The present disclosure includes systems and techniques relating to wireless local area network devices. Systems and techniques include multiplexing information for a single wireless communication device onto multiple radio pathways to produce a data packet, operating the multiple radio pathways to generate different portions of the data packet, and transmitting the data packet to the single wireless communication device by concurrent transmissions of the different portions of the data packet over different wireless channels.