Abstract:
The present invention is directed to an electric-hydraulic power unit. In one illustrative embodiment, the power unit comprises a body having a movable pressure barrier positioned therein, the movable pressure barrier defining first and second chambers therein, a configurable flow path in fluid communication with the first and second chambers, and at least one valve for configuring the flow path in a first state wherein fluid may flow within the flow path only in a direction from the first chamber toward the second chamber, and a second state wherein fluid within the flow path may flow in both directions between the first and second chambers.
Abstract:
The present invention is directed to a system for controlling a hydraulic actuator, and various methods of using same. In one illustrative embodiment, the system comprises a first hydraulic cylinder, an isolated supply of fluid provided to the first hydraulic cylinder, the isolated supply of fluid positioned in an environment that is at a pressure other than atmospheric pressure, an actuator device coupled to the first hydraulic cylinder, the actuator device adapted to drive the first hydraulic cylinder to create the sufficient pressure in the fluid, and at least one hydraulic line operatively intermediate the first hydraulic cylinder and the hydraulic actuator, the hydraulic line supplying the sufficient pressure in the fluid to the hydraulic actuator in the remote locale.
Abstract:
A spreader arm aperture generation system for use with a towed array is provided. The spreader arm aperture generation system broadly comprises a plurality of lines and a plurality of hydraulically activated, inflatable tubes for generating horizontal and vertical separation among the lines. Each of the tubes is filled with seawater to a desired pressure to achieve the desired horizontal and vertical line separation. Preferably, each of the tubes is formed from a high strength woven fabric.
Abstract:
A distributed fiber strength member tow cable termination assembly (DTCTA) having a strength member termination area which is spaced from a signal conductor termination area, and which includes a seal area having a plurality of sealing members is disclosed. The strength member termination area preferably includes a strength member termination wedge having a curved outer face which allows for higher termination efficiency. The strength member termination area and signal conductor termination area are distributed, or separated, a predetermined distance by an interface section, for example a length of hose. The separation of the strength member termination area from the signal conductor termination area allows for several improvements in the DTCTA not possible in the prior art due to the previous need to terminate the signal conductors co-located with the strength termination member.
Abstract:
A termination assembly for disposal between a marine tow cable and an acoustic receiver array includes a cable sleeve having a grip portion adapted to grip a cable outer jacket, and a collar portion for disposition on a strength member portion of the cable. The termination assembly further includes a coupling comprising an inner sleeve for mounting on a coax portion of the cable, an electrical connector for abutting a distal end of the coax portion, a coupling body interconnecting the inner sleeve and the electrical connector, the coupling body having a cylindrically-shaped wall disposed around the electrical connector to define therebetween an annular recess for receiving a connector of the acoustic receiver array, a coupling nut mounted on the coupling body and engageable with the acoustic receiver array connector to lock the acoustic receiver array connector onto the electrical connector, and an outer sleeve fixed to the coupling body. The termination assembly still further includes a stiffener rod interconnecting the outer sleeve and the cable sleeve.
Abstract:
The present invention relates to a tether retraction device having particular utility with multi-line towed arrays. A system for retrieving and deploying a multi-line towed array having a plurality of array lines has at least one tether joinable between two of the plurality of array lines. A tether retraction device is incorporated into at least one of the array lines for retracting the tether. Each tether retraction device has a tether take-up spool, and a spring driven drive means which causes the tether to wind onto the take-up spool when the array is towed at slow speeds and allows deployment of the tether from the take-up spool when tension in the tether caused by tow forces exceeds the spring force applied by the spring driven drive means.
Abstract:
A flowline jumper handling apparatus for supporting a flowline jumper in a generally horizontal position as it is offloaded from a surface structure with a first lifting apparatus and then supporting the flowline jumper in a generally vertical position as it is lowered to a subsea structure with a second lifting apparatus. The flowline jumper handling apparatus comprises an elongated spreader bar, at least one first cable connecting the spreader bar to the flowline jumper, at least one second cable connecting the spreader bar to a through member, at least one third cable connecting the through member to the second lifting apparatus, at least one fourth cable passing through the through member and connecting the flowline jumper to the first lifting apparatus, and a restricting member for preventing a portion of the fourth cable from passing through the through member. In this manner, as the fourth cable is lifted by the first lifting apparatus, the restricting member will engage the through member and support the flowline jumper in a generally horizontal position. Furthermore, as the fourth cable is lowered, the flowline jumper will rotate from the generally horizontal position to the generally vertical position.
Abstract:
A gate valve assembly for controlling fluid flow is provided with wireline-cutting inserts loose-fitted in either of, or both of, the gate opening and at least one of the seats. Each insert has a length that prohibits it from extending beyond the opening in which it is received so that the contact surface between the gate and an adjacent seat forms a continuous seal and the inserts serve only a wireline-cutting function, thus eliminating the possibility of sealing surfaces being damaged by wireline-cutting.
Abstract:
An oxygenation apparatus for introducing a flow of oxygen gas molecules into a carrier liquid in a one-pass operation comprises a receiving chamber for receiving carrier liquid, a contacting chamber for allowing the oxygen gas molecules to thoroughly contact the carrier liquid, and a separating partition located between the receiving chamber and the contacting chamber so as to preclude the return of oxygenated carrier liquid from the contacting chamber to the receiving chamber. There is an inlet for introducing oxygen gas molecules at a pressure slightly above the ambient surrounding air pressure into the apparatus, which terminates in an end portion having a gas introduction orifice. The gas introduction orifice is located in fluid communication with the receiving chamber, and causes a jet of oxygen gas molecules to be emitted therefrom. There is a spray orifice located in the separating partition, positioned to allow carrier liquid to be sprayed into the contacting chamber by the jet of oxygen gas molecules. A passageway has is located so the carrier liquid can pass from the receiving chamber to the space between the gas introduction orifice and the spray orifice, allowing oxygenated carrier liquid to exit from the contacting chamber. The oxygen gas includes molecules in the diatomic form (O.sub.2), and molecules in at least one of either the triatomic form (O.sub.3) and the monatomic form (.sup.1 O.sub.2). When the oxygen gas molecules are introduced into the apparatus, they force the carrier liquid in the space between the gas introduction orifice and the spray orifice to be sprayed through the spray orifice into the contacting chamber so that no bubbles are formed.