摘要:
The present invention relates to an organic electroluminescent display device comprising a UV stabilizer and provides an organic electroluminescent display device whose characteristics are not degraded by ultraviolet rays even after being exposed to sunlight by providing an organic electroluminescent display device comprising a substrate, a first electrode formed on the substrate, a light emitting layer formed on the first electrode, and a second electrode formed on the upper part of the light emitting layer, wherein the light emitting layer is doped with a UV stabilizer, and the UV stabilizer has an absorption range of 420 nm or less.
摘要:
An organic EL device which includes a first electrode, a hole transport layer, a light-emitting layer, and the second electrode, wherein the light-emitting layer includes a mixed light-emitting film of a host substance, which is capable of transferring an energy to another light-emitting polymer by absorbing the energy, and a phosphorescent dopant which is capable of emitting light using a triplet state after absorbing the energy received. Accordingly, the light-emitting layer can be patterned, and a color purity and light-emitting characteristics of a full color organic polymer EL device, produced through a laser induced thermal imaging operating, can be improved.
摘要:
A method of fabricating an organic light emitting display is capable of improving device characteristics by patterning a plurality of organic layers of an emission layer and a charge transport layer using a thermal transfer method to optimize thicknesses of the organic layers corresponding to R, G and B pixels. The method includes: forming lower electrodes of R, G and B pixels on a substrate; forming an organic layer on the layer; and forming an upper electrode on the organic layer. Formation of the organic layer includes forming a portion of a hole injection layer and a hole transport layer of the R, G and B pixels over an entire surface of the substrate, the organic layer comprising a first portion and a second portion, the organic layer having a thickness equal to a sum of the thicknesses of the hole injection layer and the hole transport layer. Formation of the organic layer further comprises patterning the second portion of the organic layer, and patterning emission layers of the R, G and B pixels. The second portion of the organic layer and the emission layers of the R, G and B pixels are simultaneously formed by a thermal transfer method using a thermal transfer device having the second portion of the organic layer and the emission layers of the R, G and B pixels as a transfer layer.
摘要:
A donor film includes a base film, a light-to-heat conversion layer formed on the base film, and a transfer layer formed on the light-to-heat conversion layer, wherein the transfer layer is formed of at least two layers and its first layer adjacent to the base film is a polymeric material and its second layer above the polymeric material is a small molecular material. The donor film allows a polymeric material to be used as an upper layer in the organic layers constituting the full color organic EL display device when a lower layer of the organic layer is formed of a small molecular organic material. The donor film, a method for fabricating the donor film, and a full color organic EL display device fabricated using this donor film are provided. The EL display device according to the present invention has superior properties.
摘要:
The present invention relates to an organic electroluminescent display device comprising a UV stabilizer and provides an organic electroluminescent display device whose characteristics are not degraded by ultraviolet rays even after being exposed to sunlight by providing an organic electroluminescent display device comprising a substrate, a first electrode formed on the substrate, a light emitting layer formed on the first electrode, and a second electrode formed on the upper part of the light emitting layer, wherein the light emitting layer is doped with a UV stabilizer, and the UV stabilizer has an absorption range of 420 nm or less.
摘要:
An organic light-emitting device including an anode, a cathode, an emission layer interposed between the anode and the cathode, and at least one of the hole injecting layer and the hole transporting layer interposed between the anode and the emission layer, wherein the at least one of the hole injecting layer and the hole transporting layer includes a host material, and a dopant material as an electron acceptor, wherein the dopant material has an electron affinity greater than that of the host material by at least 0.1 eV.
摘要:
The present invention relates to a full color organic electroluminescent device and a method for fabricating the same and provides a full color organic electroluminescent device. The invention reduces misalignment errors caused by fine patterning of the emitting layer by reducing the steps of the fine patterning process. In particular, the blue emitting layer functions as a hole inhibition layer which results in superior color purity and improved stability for the color organic electroluminescent device. The use of such a blue emitting layer also reduces the manufacturing steps. The device comprises a substrate; a first electrode pattern formed on the substrate; a red emitting layer formed by patterning a red emitting material on a red pixel region of the first electrode pattern and a green emitting layer formed by patterning a green emitting material on a green pixel region of the first electrode pattern. A blue emitting layer is applied over the entire substrate, over the upper parts of the red and green emitting layers and a second electrode is formed on an upper part of the blue emitting layer.
摘要:
A thermal transfer element is capable of improving transfer characteristics because transfer is performed at a low temperature. The thermal transfer element includes: a base substrate as a support substrate; a light-to-heat conversion layer formed on the base substrate to convert incident light to thermal energy; a transfer layer formed on the light-to-heat conversion layer to form an image; and a release layer formed between the base substrate and the light-to-heat conversion layer to facilitate delamination of the light-to-heat conversion layer from the base substrate. The release layer includes a silicon polymer having a glass transition temperature (Tg) of 25° C. or less, and low surface energy. In a further embodiment, the thermal transfer element includes an interlayer formed between the light-to-heat conversion layer and the transfer layer to protect the light-to-heat conversion layer.
摘要:
A thermal transfer element that a radiation absorber contained in a light-to-heat conversion layer has a concentration gradient and laser-transfers an organic thin-film layer. The thermal transfer element includes a base substrate which is a support substrate; a light-to-heat conversion layer formed on the base substrate, converting incident light to heat energy and containing a radiation absorber; and a transfer layer for image formation, wherein the radiation absorber of the light-to-heat conversion layer has a concentration distribution that the concentration is lower as it is closer to the transfer layer. The radiation absorber of the light-to-heat conversion layer has a concentration distribution that the concentration is gradually or stepwise decreased as it is farther from the base substrate and as it is closer to the transfer layer.
摘要:
The present invention relates to a full color organic electroluminescent device and a method for fabricating the same and provides a full color organic electroluminescent device. The invention reduces misalignment errors caused by fine patterning of the emitting layer by reducing the steps of the fine patterning process. In particular, the blue emitting layer functions as a hole inhibition layer which results in superior color purity and improved stability for the color organic electroluminescent device. The use of such a blue emitting layer also reduces the manufacturing steps. The device comprises a substrate; a first electrode pattern formed on the substrate; a red emitting layer formed by patterning a red emitting material on a red pixel region of the first electrode pattern and a green emitting layer formed by patterning a green emitting material on a green pixel region of the first electrode pattern. A blue emitting layer is applied over the entire substrate, over the upper parts of the red and green emitting layers and a second electrode is formed on an upper part of the blue emitting layer.