摘要:
The present inventions provide various embodiments of medical devices coated with a therapeutic coating comprising a mTOR targeting compound and a calcineurin inhibitor, and methods of applying said coatings. In various aspects, the therapeutic coating comprises a bio-absorbable carrier component at least partially formed of a cellular uptake inhibitor and a cellular uptake enhancer, a mTOR targeting compound and a calcineurin inhibitor. In various aspects, the present invention provides for controlled delivery, which is at least partially characterized by total and relative amounts of a cellular uptake inhibitor and cellular uptake enhancer in a bio-absorbable carrier component.
摘要:
Fatty acid-derived biomaterials, methods of making the biomaterials, and methods of using them as drug delivery carriers are described. The fatty acid-derived biomaterials can be utilized alone or in combination with a medical device for the release and local delivery of one or more therapeutic agents. Methods of forming and tailoring the properties of said biomaterials and methods of using said biomaterials for treating injury in a mammal are also provided.
摘要:
A barrier layer device is formed of an underlying biocompatible structure having a barrier layer coating that can exhibit anti-inflammatory properties, non-inflammatory properties, and/or adhesion-limiting properties, as well as generate a modulated healing effect on injured tissue. As implemented herein, the barrier layer is a non-polymeric cross-linked gel derived at least in part from a fatty acid compound, and may include a therapeutic agent. The underlying structure can be in the form of a surgical mesh. The barrier device is further provided with anchoring reinforcements to aid with the fastening of the barrier device for implantation purposes and reinforcing truss sections or portions that prohibit or substantially reduce the occurrence of excessive stretching and tearing. The barrier device is implantable in a patient for short term or long term applications, and can include controlled release of the therapeutic agent.
摘要:
A method of making a radially expandable device having a body constructed of a generally inelastic, expanded fluoropolymer material. The body is deployable upon application of a radial expansion force from a reduced diameter, collapsed configuration to an expanded configuration having a pre-defined and fixed increased diameter. The body has a singular, unitary construction of generally homogenous material that is characterized by a seamless construction of expanded fluoropolymer material, such as expanded polytetrafluoroethylene (ePTFE), and is preferably constructed through an extrusion and expansion process. The body is further characterized by a microstructure of nodes interconnected by fibrils in which substantially all the nodes of the body are oriented generally perpendicularly to the longitudinal axis of the body. The monolithic construction of the body and the orientation of the nodes, perpendicular to the longitudinal axis of the body, yields a radially expandable device that predictably and dependably expands to a predefined, fixed maximum diameter that is generally independent of the expansion force used to radially expand the device.
摘要:
An implantable prosthetic device for sustained release of a bioactive material into a fluid flow pathway of a patient comprises a body adapted for attachment to the fluid flow pathway. The body defines a primary lumen for accommodating fluid flow therethrough and at least one secondary lumen at least a portion of which is separated from the primary lumen by a wall sufficiently permeable to permit a bioactive material disposed in the lumen to diffuse through the wall and into the primary lumen. The bioactive material can be either a therapeutic or diagnostic agent. In a particular embodiment of the invention, the device comprises a tubular body consisting of stretched and/or expanded polytetrafluoroethylene and is adapted for attachment to a blood vessel of a patient.
摘要:
A polylumenal implantable device comprises a body defining a plurality of capillary lumina. The prosthetic device is suitable for implantation in a patient as an arterial or venous bypass graft or shunt, or intra-organ implant as well as other purposes. The improved prosthetic device has increased surface area and preferably a three-dimensional porosity for encouraging the harboring of, for example, endothelial cells, as well as for receiving organized deposition of material such as genetically enhanced cell types. A method for providing a bioactive material to a patient includes the steps of providing a polyluminal implantable organ comprising an implantable body defining a plurality of capillary lumina, treating the interior surfaces of the lumina with a bioactive material or plasma polymerization, and implanting the prosthetic device in the patient so that bodily fluids of the patient come into contact with the treated interior surfaces.
摘要:
An implantable prosthetic device comprises a remotely detectible component disposed in the body forming the device for allowing the device to be detected by x-ray, ultrasonic, or MRI imaging. By disposing at least two remotely detectible components in the body of the device, the effective flow diameter provided by the device can be monitored. A method for monitoring a patient having a damaged or dysfunctional vascular pathway includes the steps of implanting in the patient the disclosed prosthetic device and monitoring the patency of the device by x-ray, ultrasonic, MRI, or other form of remote imaging.
摘要:
An implantable self-sealing vascular graft device comprises an implantable tubular body defining a primary lumen and at least one secondary lumen, the lumina sharing a common side wall. The primary lumen is adapted for attachment to the vascular system of the patient to accommodate blood flow therethrough. A non-biodegradable elastomeric material disposed in the secondary lumen permits repeated self-sealing penetrations of a cannula through the elastomeric material and into the primary lumen. A method for repeatedly accessing a patient's vascular system by implanting in the patient the disclosed structure and accessing a patient's vascular system by passing a cannula through the secondary lumen, the common side wall, and into the primary lumen is also disclosed.
摘要:
A method of making a radially expandable fluid delivery device includes providing a tube of biocompatible fluoropolymer material with a predetermined porosity based on an extrusion and expansion forming process, applying a radial expansion force to the tube expanding the tube to a predetermined diameter dimension, and removing the radial expansion force. The tube is radially inelastic while sufficiently pliable to be collapsible and inflatable from a collapsed configuration to an expanded configuration upon introduction of an inflation force, such that the expanded configuration occurs upon inflation to the predetermined diameter dimension. The fluid delivery device is constructed of a microporous, biocompatible fluoropolymer material having a microstructure that can provide a controlled, uniform, low-velocity fluid distribution through the walls of the fluid delivery device to effectively deliver fluid to the treatment site without damaging tissue proximate the walls of the device.
摘要:
A method and apparatus relating to a biocompatible soft tissue implant is disclosed. The implant, in the form of a prosthesis, is constructed of a knitted pile mesh material arranged into either a 3-dimensional structure or a planar shape or structure. The material or fabric includes a plurality of filament extensions projecting outwardly therefrom. The filament extensions can be radially projecting looping filaments from one or more rows of the knitted pile mesh material. The combination of the filament extensions with the 3-dimensional structure results in the biocompatible implant having a structural resistance to hinder anticipated crushing forces applied to the implant, and also provide a suitable 3-dimensional structure for promoting rapid tissue in-growth to anchor such implant without migration and strengthen the repaired tissue area.