Abstract:
A biometric detection module including a light source module, a detection region and a control module is provided. The light source module is configured to emit green light, red light and IR light in a time division manner to illuminate a skin surface. The detection region is configured to detect penetration light emitted from the light source module for illuminating the skin surface and passing through body tissues to correspondingly generate a green light signal, a red light signal and an IR light signal. The control module is configured to determine a filtering parameter according to the green light signal to accordingly filter the red light signal and the IR light signal, and calculate a biometric characteristic according to at least one of the green light signal, a filtered red light signal and a filtered IR light signal.
Abstract:
There is provided an optical navigation device including an image sensor, a processing unit, a storage unit and an output unit. The image sensor is configured to successively capture images. The processing unit is configured to calculate a current displacement according to the images and to compare the current displacement or an accumulated displacement with a threshold so as to determine an outputted displacement. The storage unit is configured to save the accumulated displacement. The output unit is configured to output the outputted displacement with a report rate.
Abstract:
An operation method of an optical touch device includes: emitting, by a light emitting unit, a light beam to illuminate an object; capturing, by an image sensing device, an image of the object reflecting the light beam; selecting all pixels in the image having a brightness greater than or equal to a brightness threshold; sorting the selected pixels along a first coordinate axis of the image, a second coordinate axis of the image or based a pixel brightness; selecting the top first predetermined ratio of pixels from the sorted pixels as an object image of the object; and calculating a gravity center of the object image according to positions of the top first predetermined ratio of pixels or according to the positions of the top first predetermined ratio of pixels with a weight of pixel brightness. An optical touch device is also provided.
Abstract:
A method of an optical detecting device for synchronizing an exposure timing sequence of an image detector with a light emitting timing sequence of a reference light source is disclosed. The method includes capturing a continued image set according to a predetermined period, analyzing intensity variation of the continued image set, and adjusting the exposure timing sequence of an image detector according to the intensity variation, so as to synchronize the exposure timing sequence of the image detector with the light emitting timing sequence of the reference light source.
Abstract:
There is provided a gesture detection device including two linear image sensor arrays and a processing unit. The processing unit is configured to compare sizes of pointer images in the image frames captured by the two linear image sensor arrays in the same period or different periods so as to identify a click event.
Abstract:
An optical navigation apparatus and an optical navigation method are provided. The optical navigation apparatus includes a light source unit, an image sensing unit, and a processing unit, wherein the processing unit is electrically connected to the light source unit and the image sensing unit. The light source unit generates a beam of light. The image sensing unit captures a plurality of images within a time interval. The processing unit determines that the beam of light is projected onto a touch object according to the images, calculates a piece of displacement information related to the touch object according to the images, generates a comparison result by comparing the piece of displacement information with a threshold, and sets a displacement resolution of the optical navigation apparatus according to the comparison result.
Abstract:
A system and method based on hybrid biometric detection capture first images of a user that is projected by first light of different wavelengths, extract various biometric informations from the first images, analyze and compare for each of the biometric informations to generate a matching score, determine an identity for the user according to all of the matching scores, generate second images and PPG signals from dispensed second light from the user, generate a time and PPG variation signal and a space and PPG variation signal for each frame of the second images, convert the time and PPG variation signals into frequency domain signals, determine a reference frequency according to the space and PPG variation signals, retrieve energy of the frequency domain signals at the reference frequency, and establish a three-dimensional energy distribution from the retrieved energy.
Abstract:
A multipoint positioning method for a touchpad including the steps of: scanning a touchpad to retrieve two-dimensional data; calculating an object area and a number of maxima of local maxima in the two-dimensional data; comparing the object area with an area threshold when the number of maxima is larger than 1; and identifying positions of the local maxima as a plurality of contact positions when the object area is larger than or equal to the area threshold.
Abstract:
There is provided an image positioning method including the steps of: capturing an image frame with an image sensor; identifying at least on object image in the image frame; comparing an object image size of the object image with a size threshold and identifying the object image having the object image size larger than the size threshold as a reference point image; and positioning the reference point image. There is further provided an interactive imaging system.
Abstract:
A power-saving sensing module includes a light source, a first and a second sensor, a first and a second detection unit, and a controller. The first sensor detects a touch of an external object to generate a first sensing signal corresponding to the touch. The first detection unit generates a touch signal corresponding to the first sensing signal. The second sensor senses a second sensing signal corresponding to the external object in response to the light ray. When the touch signal is greater than a touch threshold value, the second detection unit outputs a displacement signal corresponding to the second sensing signal. The controller outputs a control signal in response to the touch signal of the first detection unit and the touch threshold value, so that the second detection unit operates at a dormant state or a sensing state in response to the control signal.