Abstract:
A method for cell reselection by a wireless communication device is described. The method includes camping on a serving cell in idle mode. A neighbor cell is detected. A serving cell rank is computed for the serving cell. A neighbor cell rank is computed for the neighbor cell based on multimedia broadcast multicast service metrics. Cell reselection is determined based on the serving cell rank and the neighbor cell rank.
Abstract:
Systems and methodologies are described herein that facilitate cell barring based on erroneous messages received within a wireless communication system. As described herein, in the event that a device fails to receive and/or decode respective messages transmitted from a network cell over a common communication channel, the device can implement one or more error handling procedures as described herein to reselect away from the network cell and/or a frequency associated with the network cell (e.g., as if the network cell was explicitly barred). Cell barring can be triggered as described herein based on a count of erroneous messages (e.g., consecutive messages, messages received within a predetermined time window, etc.), elapsed time between erroneous messages, or the like. Further, cell barring can be performed as described herein based on failure to acquire pre-scheduled system information, common system information determined to have invalid abstract syntax, or the like.
Abstract:
Methods, systems, and devices are described for recovery from a connection disruption of a user equipment (UE) operating in a multi-carrier mode. The UE may establish a first connection with a primary cell and a second connection with a secondary cell while operating in the multi-carrier mode. A determination may be made that a disruption in the connection with the primary cell has occurred, and the UE may perform a connection reestablishment procedure to attempt to reestablish communications. The connection reestablishment routine may prioritize the secondary cell ahead of one or more other cells for attempting to reestablish communications. The prioritization may be based at least in part on the establishment of the second connection in the multi-carrier mode.
Abstract:
Methods, systems, and devices are described for reducing congestion in a wireless communications system. A second connection failure is detected, and a difference between a timestamp of the second connection failure and a timestamp of a first connection failure is calculated. Upon determining that the difference satisfies a first time threshold, information relating to one or more previous connection failures is cleared. A time period is identified. A number of connection failures from a cell that occur during the time period is identified. A determination is made as to whether the number of connection failures satisfies a threshold. Upon determining that the number of connection failures satisfies the threshold, a future connection request may be withheld for a time period.
Abstract:
This application relates to systems and methods for recovering data in multimedia file segments. A communication device may receive a multimedia file segment that includes damaged data. The communication device may replace the damaged data with dummy data to reconstruct the multimedia file segment. The communication device may then play the reconstructed multimedia file segment. Thus, by replacing the damaged data with dummy data, the communication device may play a multimedia file segment even when part of the segment may be damaged.
Abstract:
A delta configuration is signaled for handover of a wireless communication device (e.g., a user equipment, UE) from a first form of connectivity to a second form of connectivity. For example, a UE with master cell group (MCG) connectivity may be handed-over to multiple radio access technology-dual connectivity (MR-DC). In some examples, a UE with standalone (SA) connectivity may be handed-over to non-standalone (NSA) connectivity (e.g., dual connectivity). In conjunction with this handover the UE may be signaled as to whether the UE is to reuse a configuration from the first connectivity mode during the second connectivity mode.
Abstract:
Some aspects described herein relate to determining to fallback from a first radio access technology (RAT) to a second RAT to perform an emergency call, and deprioritizing, based on the determining to fallback, access to the first RAT to continue to use the second RAT for at least a period of time after the emergency call.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may communicate via a first connection using one or more transmit parameters. The UE may determine to suspend subsequent attempts to communicate via a second connection, in a dual connection mode, based at least in part on satisfaction of a threshold number of failed attempts to communicate via the second connection. The UE may determine one or more parameters for suspension of the subsequent attempts to communicate via the second connection based at least in part on a determination that satisfaction of the threshold number of failed attempts is associated with one or more exposure conditions that are based at least in part on the one or more transmit parameters. Numerous other aspects are provided.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive, from a base station, control signaling for communications in a wireless communications system. The control signaling may indicate a first duration for an inactivity timer. The UE may initiate the inactivity timer and a second timer based on identifying a period of inactivity. The second timer may have a second duration that is shorter than the first duration for the inactivity timer. In some examples, the second duration may be based on one or more parameters, such as a display status, a battery status, a scaling factor, the first duration, an application state, or any combination thereof. The UE may release a connection for the communications in the wireless communications system based on an expiration of the second timer, an expiration of the inactivity timer, or a combination thereof.
Abstract:
Methods, systems, and devices for wireless communication are described. For example, the described techniques provide for efficiently requesting all (or a threshold number of) system information (SI) messages that are on demand in a random access channel (RACH) procedure. In one example, a user equipment (UE) may transmit a request for all (or a threshold number of) SI messages in a radio resource control (RRC) connection request or message 3 RACH transmission even if the UE is configured with the option to request SI messages individually with one RACH resource per SI message. In another example, a UE may transmit a request for all (or a threshold number of) SI messages on an additional resource (e.g., RACH resource or other resource configured by a base station) when the UE is configured with the option to request SI messages individually with one RACH resource per SI message.