Abstract:
An endocapsule has a measurement chamber therein containing a sensor that detects at least one metabolic product of a specific bacterium in a hollow organ of a human or animal gastrointestinal tract. The endocapsule is introduced into the hollow organ wherein detection of the at least one metabolic product takes place.
Abstract:
In a method for correctly geometrically assigning x-ray images of a patient an optically operating recording device is attached to an x-ray device generating the x-ray images. A dimensionally stable marker surface which can be optically detected by the recording device and defines a reference system is fixed to the patient in a fixed relative position. The x-ray device is brought into a first and second recording position such that the recording device is directed toward the marker surface. In a recording position the x-ray device produces a first and second x-ray image of the patient and the recording device produces a first and second recording of the marker surface. The respective geometric position of the first and second x-ray image is determined in the reference system from the recordings. The first and second x-ray images are correctly geometrically assigned to one another in accordance with their position.
Abstract:
In a method for geometrically correct association of at least two 3D image data of a patient, a marker field that defines a reference and is dimensionally stable and can be imaged in an x-ray image, is fixed in a stationary position relative to the patient. An x-ray apparatus is brought into first and second 3D acquisition positions. In each of the 3D acquisition positions, the x-ray apparatus acquires first 2D x-ray images for the associated 3D image data in various positions. The first and second 3D acquisition positions are selected such that a second 2D x-ray image that includes an image of at least a portion of the marker field is acquired in at least one respective position. The respective attitudes of the 3D acquisition position and the 3D image data in the reference system are determined from the image of the marker field in the second 2D x-ray image. First and second image data are geometrically correctly associated with one another according to their respective attitude.
Abstract:
Three-dimensional image information is generated of a body part that is larger than the visual field of an X-ray machine. An X-ray source and an X-ray detector are disposed at a first position such that the X-ray source and the X-ray detector can record a first projection image of at least a first section of a body part. Then the first projection image is recorded. The X-ray source and the X-ray detector are next disposed at a second position such that the X-ray source and the X-ray detector can record a second projection image of at least a second section of the body part. The second section partially overlaps the first section. The first and second projection images are merged to form a projected image. A three-dimensional volume of the body part is reconstructed from the plurality of projection images.
Abstract:
Disclosed herein is a framework for facilitating fused-image visualization for surgery evaluation. In accordance with one aspect of the framework, at least one pre-operative image and at least one intra-operative image of an anatomical structure are received. A region of interest may be identified in the intra-operative image. The pre-operative image may be straightened, and a symmetric region may be identified in the straightened pre-operative image. The symmetric region is substantially symmetrical to a target region in the straightened pre-operative region. The target region corresponds to the region of interest in the intra-operative image. The symmetric region may be extracted and reflected to generate a reference image. The intra-operative image may be rigidly registered with the reference image to generate registered intra-operative image, which is overlaid on the target region in the straightened pre-operative image to generate a fused image.
Abstract:
The pose of an implant represented in a medical image is determined from the medical image. The x-ray image of the implant is compared to a database of the implant viewed at different poses (e.g., viewed from different directions). The implant pose associated with the best match indicates the pose of the implant in the x-ray image.
Abstract:
In an imaging system and method for preparing x-ray images and optical images, at least two x-ray images of an examination subject are acquired by emitting x-rays from at least two different x-ray image acquisition points in space. At least two optical exposures are acquired from the examination subject at respective optical exposure origination points that respectively optically correspond to the x-ray image acquisition points. The optical exposures and the x-ray images are superimposed so that each optical image is superimposed with the x-ray image that originated from an x-ray image origination point corresponding to the optical exposure origination point of that optical exposure.
Abstract:
In a method and medical system for positionally correct association of an image data set of a patient, obtained with the medical system, and an N-coordinate system of an electromagnetic navigation system, before a medical procedure at least one sensor coil is attached to the imaging system, and a transformation matrix between the image data set and the sensor coil is determined. During the medical procedure, the image data set is acquired, and the current position of the sensor coil is determined. The image data set is associated in a positionally correct manner with the N-coordinate system based on the known position of the sensor coil relative to the imaging system, and the transformation matrix.
Abstract:
In an imaging system and method for preparing x-ray images and optical images, at least two x-ray images of an examination subject are acquired by emitting x-rays from at least two different x-ray image acquisition points in space. At least two optical exposures are acquired from the examination subject at respective optical exposure origination points that respectively optically correspond to the x-ray image acquisition points. The optical exposures and the x-ray images are superimposed so that each optical image is superimposed with the x-ray image that originated from an x-ray image origination point corresponding to the optical exposure origination point of that optical exposure.
Abstract:
In an x-ray system and a method for image composition, congruent optical images and x-ray images of subjects provided with markers are generated. A transformation matrix/imaging matrix is formed and applied to the congruent x-ray images based on the detected identical markers in optical images. The transformation matrix is used to compose an aggregate image from the x-ray images.