Abstract:
Techniques for performing carrier switching in a multi-carrier access network are described. A terminal may be assigned to a carrier among multiple carriers having different transmit power levels, e.g., by the access network during system access or handoff. The terminal may receive a switch threshold from the access network. The terminal may periodically measure the received signal strength of the assigned carrier and may compare the received signal strength against the switch threshold. The terminal may refrain from switching to a stronger carrier if the received signal strength exceeds the switch threshold and may switch to the stronger carrier if the received signal strength is below the switch threshold. This carrier switching scheme may prevent the terminal from switching to the strongest carrier when the assigned carrier can provide satisfactory performance. The access network may also switch the terminal to another carrier by sending a carrier switch message.
Abstract:
An automated neighbor discovery by a base station with the assistance of an access terminal are disclosed. An exemplary method includes receiving a first message from an access terminal based on detecting an identification signal by the access terminal from the first base station in a communication system. Determination whether the first base station is a known base station is then made. If the first base station is not known, a second message is transmitted to the access terminal requesting a network identification of the first base station. A third message from the access terminal is received in response to the second message including the requested network identification. A request for identification data is sent by the second base station to the first base station via a network link based on the network identification. Corresponding apparatus and other exemplary methods are also disclosed.
Abstract:
A method and apparatus for processing TuneAway operation by an access terminal and an access network in a wireless communication system is described. The beginning and end of tune away is determined from a TuneAway attribute, a TuneAwayRequest and a TuneAwayResponse messages. The access terminal and the access network operate on multiple tune away schedules. specifying tune away schedules by a separate TuneAway attribute. The same TuneAwayRequest and the TuneAwayResponse messages are shared. The tune away operation is controlled through a variable TunedAwayStatus, wherein the variable TunedAwayStatus is public data of the protocol. It is determined if an access terminal has tuned away.
Abstract:
A route protocol is established whereby a mobile device can communicate to a multitude of (receiving) base stations though a tunnel created through a serving base station. A message that includes a Route Creation Header can be transmitted by the mobile device to create the tunnel. The Route Creation Header is reviewed by the receiving base station while the mobile device is in a Waiting-To-Open State. Various errors might occur with respect to the Route Creation Header. These errors can be conveyed to the mobile device by base station by setting one or more error code fields. Once the errors are resolved, another attempt to create a tunnel with base station can be made, if desired.
Abstract:
Systems and methodologies are described that facilitate broadcasting an interference level and adjusting transmit power corresponding to a reverse link in accordance with the interference level. An interference indication can be broadcasted on a broadcast channel in a wireless communication system. In response to the broadcast, mobile devices can adjust transmit power on the reverse link based upon considerations of the interference level. Further, mobile devices can evaluate an initial set point of a transmit power level during periods of inactivity.
Abstract:
Wireless communications methods and apparatus are described. A communications apparatus, e.g., a base station, measures interference information, e.g., other sector interference information. The communications apparatus generates a preamble which includes a plurality of pilot symbols and at least one of the pilot symbols includes interference information. In some embodiments, the preamble is part of a superframe structure, e.g., a recurring superframe structure, including the preamble and a plurality of frames, at least some of the frames used to convey traffic data. The communications apparatus transmits the preamble, thus broadcasting the interference information to access terminals in the vicinity. An access terminal receives the preamble including a plurality of pilot signals, at least one of the pilot signals including interference information. The access terminal recovers the interference information from the received preamble and controls signal transmission based on the recovered interference information.
Abstract:
Techniques for selecting serving sectors and performing handoff for a terminal on the forward and reverse links are described. The terminal may obtain pilot measurements for pilots transmitted on the forward link and may update an active set based on the pilot measurements. The terminal may send a transmission (e.g., for pilot, signaling, etc.) on the reverse link and may receive channel quality information indicative of reverse link channel quality for the terminal at multiple sectors in the active set. The transmission may include pilot, and the channel quality information from each sector may include a pilot carrier-over-thermal ratio (pCoT) determined by that sector based on the pilot. The terminal may select a serving sector based on the channel quality information, interference information, and/or other information and may send a request for handoff (e.g., via a signaling message an/or an access probe) to the selected serving sector.
Abstract:
Methods and apparatus for communicating between an access terminal (AT) and a device serving the AT by way of an Access Point (AP) are described. In accordance with one feature serving devices may be assigned specific addresses which are interpreted based on the source of the communication, e.g., MAC packet, in which the address is used. Such addresses may be interpreted as being of a different type than other addresses which can be interpreted and/or used without taking into account the identity of the sender. In some embodiments Session Controllers and/or Internet Attachment Points (IAPs) are identified with such addresses. The address value is the same for one or more ATs but is interpreted at an AP receiving such the IAP address based on information corresponding to the AT which sent the packet including the IAP or Session Controller address.
Abstract:
Systems and methods are disclosed that facilitate wireless communication using resource utilization messages (RUMs), in accordance with various aspects. A RUM may be generated for a first node, such as an access point or an access terminal, to indicate that a first predetermined threshold has been met or exceeded. The RUM may be weighted to indicate a degree to which a second predetermined threshold has been exceeded. The first and/or second predetermined thresholds may be associated with various parameters associated with the node, such as latency, throughput, data rate, spectral efficiency, carrier-to-interference ratio, interference-over-thermal level, etc. The RUM may then be transmitted to one or more other nodes to indicate a level of disadvantage experienced by the first node.
Abstract:
Systems and methods are provided for processing wireless signal components for a mobile wireless access broadband service. This can include processes for defining a protocol that controls whether to invoke a tune away component to determine an alternative wireless communications path. This can include defining one or more tune away parameters for the tune away component. The process can then automatically select the alternative wireless communications path based in part on the tune away procedure and at least one of the tune away parameters.