Abstract:
A novel redundancy architecture for an integrated-circuit memory is utilized having no redundancy columns separate from the useful columns but with each useful column, except for the first column, serving as a redundancy column for any adjacent defective column. If a column of order j, normally designated by an output of order j of the column decoder DC, is serviceable, it is actually this column which will be selected by the corresponding output of the decoder DC. On the other hand, if the column is defective, no specialized remote redundancy column will be sought for the repair but instead the output of the decoder will be made to select the following column (order j+1), which would normally have been designated by the following output (order j+1) of the decoder. The other decoder output will be routed towards a third column (order j+2), etc. Therefore, the links between the decoder outputs and the column used will be progressively offset. The memory plane is seen in groups of n+1 columns with the row DR and column DC decoders. A fuse circuit CF designates a defective column. Through the use of this architecture all of the columns can be tested even those which are not being used.
Abstract:
A self-synchronization device is disclosed for output circuits comprising a "3-state" gate of memories working in internal clock mode. This device consists of a sequential logic circuit which allows the "3-state" gate to go into low impedance only when a datum is available at the output of the read amplifiers.
Abstract:
A method of contact between two conductive or semiconductive layers deposited on a substrate is disclosed. The method comprises the following steps:the depositing and etching of a first layer,the depositing of an insulating layer under pressure and temperature conditions such that the insulating layer is thinned at the edges of the etched zones of the first layer as compared with the thickness on the surface of the substrate and on the surfaces of the etched zones of the first layer,the chemical etching of the insulating layer on a thickness at least equal to the thickness of the thinned layer but substantially smaller than the thickness elsewhere,the depositing and etching of the second conductive or semiconductive layer under pressure and temperature conditions leading to high covering capacity.
Abstract:
The invention relates to a method for manufacturing a semiconductor substrate, in particular, a semiconductor-on-insulator substrate by providing a donor substrate and a handle substrate, forming a pattern of one or more doped regions typically inside the handle substrate, and then attaching such as by molecular bonding the donor substrate and the handle substrate to obtain a donor-handle compound.
Abstract:
The present invention relates to a semiconductor device that has a semiconductor-on-insulator (SeOI) structure, which includes a substrate, an insulating layer such as an oxide layer on the substrate and a semiconductor layer on the insulating layer with a field-effect-transistor (FET) formed in the SeOI structure from the substrate and deposited layers, wherein the FET has a channel region in the substrate, a gate dielectric layer that is made from at least a part of the oxide layer of the SeOI structure; and a gate electrode that is formed at least partially from a part of the semiconductor layer of the SeOI structure. The invention further relates to a method of forming one or more field-effect-transistors or metal-oxide-semiconductor transistors from a semiconductor-on-insulator structure that involves patterning and etching the SeOI structure, forming shallow trench isolations, depositing insulating, metal or semiconductor layers, and removing mask and/or pattern layers.
Abstract:
The invention provides a content-addressable memory cell formed by two transistors that are configured so that one of the transistors is for storing a data bit and the other for is storing the complement of the data bit. Each transistor has a back control gate that can be controlled to block the associated transistor. The device also includes a comparison circuit that is configured to operate the first and second transistors in read mode while controlling the back control gate of each of the transistors so as to block the passing transistor if a proposed bit and the stored bit correspond. Then, the presence or absence of current on a source line linked to the source of each of the transistors indicates whether the proposed bit and the stored bit are identical or not. The invention also provides methods for operating the content-addressable memory cells of this invention, as well as content-addressable memories having a plurality of the content-addressable memory cells of this invention.
Abstract:
A differential sense amplifier for sensing data stored in a plurality of memory cells of a memory cell array, including a first CMOS inverter having an output connected to a first bit line and an input connected to a second bit line complementary to the first bit line, and a second CMOS inverter having an output connected to the second bit line and an input connected to the first bit line. Each CMOS inverter includes a pull-up transistor and a pull-down transistor, and the sense amplifier has a pair of pass-gate transistors arranged to connect the first and second bit lines to a first and a second global bit lines. Advantageously, the pass-gate transistors are constituted by the pull-up transistors or the pull-up transistors.
Abstract:
A differential sense amplifier for sensing data stored in a plurality of memory cells of a memory cell array, including a first CMOS inverter having an output connected to a first bit line (BL) and an input connected to a second bit line complementary to the first bit line and a second CMOS inverter having an output connected to the second bit line (/BL) and an input connected to the first bit line. Each CMOS inverter includes pull-up and pull-down transistors, wherein the sources of either of the pull-up transistors or the pull-down transistors are electrically coupled and connected to a pull-up voltage source or a pull-down voltage source without an intermediate transistor between the sources of the transistors and the voltage source.
Abstract:
A circuit made on a semiconductor-on-insulator substrate. The circuit includes a first transistor having a first channel, a second transistor having a second channel, with the transistors provided in serial association between first and second terminals for applying a power supply potential, each of the transistors comprising a drain region and a source region in the thin layer, a channel extending between the source region and the drain region, and a front control gate located above the channel. Each transistor has a back control gate formed in the base substrate below the channel of the transistor and capable of being biased in order to modulate the threshold voltage of the transistor. At least one of the transistors is configured for operating in a depletion mode under the action of a back gate signal which will sufficiently modulate its threshold voltage.
Abstract:
The invention relates to a memory cell having an FET transistor with a source, a drain and a floating body between the source and the drain, and an injector that can be controlled to inject a charge into the floating body of the FET transistor. The injector includes a bipolar transistor having an emitter, a base and a collector formed by the body of the FET transistor. Specifically, in the memory cell, the emitter of the bipolar transistor is arranged so that the source of the FET transistor serves as the base for the bipolar transistor. The invention also includes a memory array comprising a plurality of memory cells according to the first aspect of the invention, and to methods of controlling such memory cells.