Abstract:
A session management method and apparatus for managing mobility and session procedures integrally to improve manage the session of the terminal efficiently in the handover procedure. The session management method of a control entity includes transmitting a bearer management message for one of establishing, modifying, and releasing a bearer to a source base station, transmitting, when a handover of a terminal occurs before the bearer management is completed, a handover request including at least one of a first list including the bearers being managed by the source base station and a second list including the bearers being managed by the control entity to a target base station, and receiving a handover response from the target base station, wherein the handover response includes a bearer list generated based on one of the first and second list.
Abstract:
A method performed by a master base station supporting a dual connectivity with a secondary base station in a wireless communication system is provided. The method includes transmitting, to the secondary base station, address information associated with data forwarding, receiving, from the secondary base station, a first message associated with a data usage of the secondary base station, the first message including information on a data volume for a radio access technology (RAT) of the secondary base station, and transmitting, to a first network entity performing a mobility management, a second message including the information on the data volume for the RAT of the secondary base station, based on a trigger by a handover of a terminal from the master base station that is a source base station to a target master base station, wherein the data volume for the RAT of the secondary base station reported to the first network entity excludes data that is forwarded from the secondary base station to the target master base station based on the address information during the handover.
Abstract:
A method for managing congestion in a base station in a mobile communication system according to one embodiment of the present invention comprises the steps of: requesting user subscription information to a mobility management entity (MME); receiving the user subscription information from the MME; and performing a congestion control in a communication between terminals on the basis of the received user subscription information. According to the embodiment, action may be taken in consideration of the user information and a current congestion state when controlling the congestion in a wireless communication system, and thus side effects resulting from the congestion control may be reduced. Further, the present invention provides a method and device for not charging for dropped packets when performing a packet drop, and thus the congestion control may be performed more easily. Also, the present invention has an advantage of performing the congestion control, according to the type of packets to which congestion control is applied or the type of application or service which has generated packets, at the time of controlling the congestion, thereby minimizing user's inconvenience due to the congestion control.
Abstract:
Provided are a communication method and system enabling convergence of 5G communication and IoT technology to achieve higher data rates for beyond 4G communication systems. In addition, provided is a method for transmitting a power headroom report (PHR) by a user equipment (UE) in a mobile communication system. The method includes: receiving a first PHR configuration information for a first base station (first ENB); receiving a second PHR configuration information for a second ENB; generating, when the UE has dual connectivity to the first ENB and the second ENB, a dual connectivity PHR containing PHR information for the first ENB and second ENB based on a dual connectivity PHR format; and sending the dual connectivity PHR. There is also provided a user equipment supporting the above method. There is further provided a base station and operation method therefor that enable the user equipment to have dual connectivity.
Abstract:
A method and an apparatus for configuring a function of monitoring events concerning user equipment (UE) are provided. The method of a home subscriber server (HSS) includes receiving a first request message including monitoring event information from a service capability exposure function (SCEF), setting, if the monitoring event information is set to loss of connectivity, a mobility-related timer of a terminal to a value based on a value of a maximum detection time included in the first request message, and transmitting a second request message including the monitoring event information and the set mobility-related timer of the terminal to a mobility management entity.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.Methods and apparatuses provide a service to user equipment through a dedicated core network. In one method, a base station, also referred to as eNB, receives a non-access stratum (NAS) message from user equipment (UE), and transmits a first initial UE message having the NAS message to a first mobility management entity (MME). Also, the base station receives a redirection request message having the NAS message from the first MME, and transmits a second initial UE message having the NAS message to a second MME. In another method, the MME receives the first initial UE message having the NAS message from the base station, and transmits the redirection request message having the NAS message when the MME fails to support a dedicated core network according to UE usage type information. If the redirection request message is transmitted, a second initial UE message having the NAS message is transmitted to a dedicated MME.
Abstract:
A method and an apparatus for feedback based on information transmitted between base stations (or base stations) through cooperative communication are provided. The method includes receiving, from the second base station, a first message for requesting a channel state information (CSI) report, and transmitting, to the second base station, a second message including the CSI report, based on the first message. The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as long term evolution (LTE).
Abstract:
A method for transmitting and receiving a signal in a packet data network gateway (PGW) of a mobile communication system according to an embodiment of the present specification comprises the steps of: receiving a first request message which includes an identifier of a terminal and is associated with a packet data network connection; sending a second request message to a policy and charging rules function (PCRF) server on the basis of the received first request message; and if quality of service (QoS) related information is included in a response message received in response to the second request message from the PCRF, performing a control associated with the packet data network connection on the basis of the QoS related information. In a wireless communication system using a PMIP according to the present invention, it is possible to generate a PDN connection in accordance with the default QoS.
Abstract:
Disclosed are: a communication method for incorporating an IoT technique with a 5G communication system for supporting a higher data transmission rate than that of a 4G system or a subsequent system; and a system therefor. The present invention can be applied to intelligent services (for example, services related to smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail business, security, safety, and the like) on the basis of a 5G communication technique and IoT-related techniques. A method for transmitting and receiving a signal by a base station in a mobile communication system comprises the steps of: receiving a handover request message including a first information related to a device-to-device (D2D) service for a handover target terminal; and allocating D2D resources to the terminal based on the handover request message.
Abstract:
The present invention relates to a method to install a terminal profile in a wireless communication system, and the method may comprise the steps of: displaying a list including one or more mobile network providers; detecting a selection with respect to any one of the one or more mobile network providers; obtaining connection-related information with respect to the selected mobile network provider from a discovery server based on information related to the selected mobile network provider; and transmitting identification information of a universal integrated circuit card (UICC) and identification information of the discovery server to a server of the selected mobile network provider based on the connection-related information, in order to download a UICC-related profile from a profile administrator. However, the present invention is not limited to this embodiment and other embodiments are possible.