Abstract:
A backlight unit for a three-dimensional (3D) image display includes a light guiding plate configured to guide light; a light source configured to emit the light to the light guiding plate; and a diffraction grating structure provided on a surface of the light guiding plate, the diffraction grating structure configured to diffract the light emitted from the surface of the light guiding plate, and including diffracting gratings having different heights.
Abstract:
A beam deflector includes a first wavelength selective polarizer configured to convert a polarization state of light in a first wavelength band into a first polarization state, a first liquid crystal deflector including liquid crystal molecules and an optical path change surface to deflect light incident from the first wavelength selective polarizer, and a controller configured to control the first liquid crystal deflector to adjust an angle of the first optical path change surface.
Abstract:
There is provided a three-dimensional (3D) projection system including a diffraction element having a grating pattern and a plurality of projectors that project light having image information onto the diffraction element. The diffraction element displays a 3D image at multiple viewing points by adjusting a light exit direction based on an incident angle of the light projected by each of the plurality of projectors at the grating pattern.
Abstract:
Provided are a lighting system, a backlight unit and a 3D image display apparatus including the backlight unit. The backlight unit includes: a lighting system configured to selectively output collimated light and diverging light, a diffraction device, and a light guide plate configured to guide the collimated light and the diverging light from the lighting system to the diffraction device. An exit direction of the collimated light from the diffraction device depends on at least one of an angle of incidence of the collimated light and the wavelength of the collimated light.
Abstract:
There are provided a backlight unit, a 3D image display apparatus, and a method of manufacturing the same. The backlight unit may include a light source, a light guide plate that guides light irradiated from the light source, and including an exit surface through which the light exits, and a reflection plate provided on at least a part of the exit surface of the light guide plate.
Abstract:
A method of correcting optical characteristics of a back light unit (BLU) for a three-dimensional (3D) display apparatus includes: obtaining first optical characteristics of a reference image; obtaining a corrected image by applying an initial correction value, which is determined based on the first optical characteristics, to the reference image; obtaining second optical characteristics of the corrected image; determining whether the second optical characteristics match reference optical characteristics; outputting the corrected image based on determining that the second optical characteristics match the reference optical characteristics, and obtaining a new corrected image and repeating, for the new corrected image, the obtaining the second optical characteristics and the determining whether the second optical characteristics match the reference optical characteristics, based on determining that the second optical characteristics of the corrected image do not match the reference optical characteristics.
Abstract:
A pattern structure includes a plurality of pattern structure units arranged substantially on a same plane, where each of the pattern structure units has a first surface and a second surface, which are opposite to each other, and a microstructure is defined on the first surface of each of the pattern structure units, and a flattening layer disposed on the second surface of each of the plurality of pattern structure units, where the flattening layer connects the pattern structure units with each other, and a vertical step difference exists between second surfaces of the pattern structure units.
Abstract:
An imprinting apparatus includes: a coating unit which coats a substrate with ink including a photocurable resin in a diluent; a pressing unit which presses the ink with an imprint stamp including an uneven pattern; and a light source which irradiates light to the ink, which is in a pressed state, and cures the photocurable resin. The coating unit, the pressing unit and the light source move relative to the substrate in a processing direction. The coating unit is located ahead of the pressing unit in the processing direction.
Abstract:
A patterning method using an imprint mold, to form an imprinted pattern structure, includes providing a resist layer from which the pattern structure will be formed, performing a first imprint process on a first area of the resist layer by using the imprint mold to form a first pattern of the pattern structure through deformation of the resist layer in the first area, and performing a second imprint process on a second area of the resist layer by using the imprint mold to form a second pattern of the pattern structure through deformation of the resist layer in the second area. The first and second areas are overlapped with each other in a third area of the resist layer, and the performing the second imprint process deforms a first portion of the first pattern in the third area to form the second pattern.
Abstract:
A master wafer includes: a plurality of unit wafers each including a pattern disposed thereon; a coupling surface defined on each of the unit wafers; and a coupling part which couples adjacent unit wafers among the plurality of unit wafers on which the coupling surface is defined, to each other.