Abstract:
A method for operating a large scale antenna array in a wireless communication system includes receiving one or more signals. The one or more signals include information for beamforming to a plurality of user equipments (UEs) using a full-dimensional multiple-input multiple-output (FD-MIMO) beamforming scheme. The FD-MIMO beamforming scheme includes same time resources and same frequency resources that are co-scheduled to the plurality of UEs. The method further includes identifying a time delay of the one or more signals associated with one or more antenna arrays that are distributed in the large scale antenna array and performing a multi-user (MU) joint beamforming on the one or more signals to one or more UEs.
Abstract:
Methods and apparatuses for providing feedback by a UE. A method includes receiving a first set of CSI-RS and a second set of CSI-RS, calculating a CQI using a received power of the first set of CSI-RS and a channel matrix estimated based on the second set of CSI-RS, and sending feedback based on the calculated CQI. A method includes measuring signals received on a plurality of CSI-RS ports; calculating CQI values for each of applications of precoding matrixes to each of the selected combinations of CSI-RS ports; selecting a SPN, a SPI, a PMI, and a RI that yields a highest CQI from among the calculated CQI values; and sending feedback indicating the SPI, the highest CQI value, the PMI, and at least one of the SPN or the RI.
Abstract:
A method for network assisted interference mitigation includes identifying at least one pair of adjacent resource blocks within a same subframe. The at least one pair includes a low power resource block (RB) and a high power RB. The low power RB has a substantially lower beamforming gain compared to the high beamforming gain of the high power RB such that a ratio (R) comparing receive powers of the high power RB and the low power RB to each other is greater than a threshold ratio (μ). The method includes reducing a transmit power of the high power RE to a reduced transmit power level at which the ratio R is less than or equal to the threshold ratio μ (R≦μ).
Abstract:
Methods and apparatuses for a channel estimation and prediction operation in a wireless communication systems. A method of a BS comprises: receiving an SRS; partitioning, based on a partition policy, a frequency band of the SRS into sub-bandwidths in a frequency domain; generating, based on previously stored CSI in memory and the partition policy, a set of chunks corresponding to respective sub-bandwidths; performing CHPD operations corresponding to the respective sub-bandwidths to generate channel parameters, wherein different CHPD operations are applied to the respective sub-bandwidths; combining the channel parameters predicted from the respective sub-bandwidths in the frequency domain; and performing, based on the combined channel parameters, a channel estimation and prediction operation.
Abstract:
Apparatuses and methods for transmission mode adaptation in New Radio (NR) with AI/ML assistance. A base station includes a transceiver configured to receive a set of input metrics. The set of input metrics comprises at least one metric derived from a channel state information (CSI) report. The base station further includes a processor operably coupled to the transceiver, the processor configured to determine, based on the set of input metrics, a first multiple-input multiple-output (MIMO) mode throughput prediction and a second MIMO mode throughput prediction, generate, based on the first MIMO mode throughput prediction, a predicted first MIMO mode throughput result, generate, based on the second MIMO mode throughput prediction, a predicted second MIMO mode throughput result, and select a MIMO mode based on the predicted first MIMO mode throughput result and the predicted second MIMO mode throughput result.
Abstract:
Calibration in distributed multiple input multiple output (MIMO) networks. A method performed by a first base station (BS) includes receiving a first uplink (UL) reference signal (RS) and determining, based on the first UL RS and a second UL RS, a first phase offset for transmission of a first downlink (DL) RS to a user equipment (UE). The second UL RS is associated with a second BS. The first phase offset of the first DL RS is relative to a second DL RS associated with the second BS. The method further includes transmitting the first DL RS with the first phase offset; receiving UE feedback associated with the first DL RS and the second DL RS; and determining, based on the first phase offset and the received feedback, for a DL data transmission to the UE, a second phase offset between transmissions of the first BS and the second BS.
Abstract:
A method and device for self-tuning scales of variables for processing in fixed-point hardware. The device includes a sequence of fixed-point arithmetic circuits configured to receive at least one input signal and output at least one output signal. The circuits are preconfigured with control scales associated with each of the input and output signals. A first circuit in the sequence is configured to receive a first input signal having a dynamic true scale that is different from the control scale associated with the first input signal. Each of the circuits is further configured to determine, for each of the output signals, an adaptive scale from the control scale associated with the output signal based on the true scale of the first input signal and the control scale associated with the first input signal, and generate, from the input signal, the output signal having the associated adaptive scale.
Abstract:
A base station (UE) is configured to perform a computer-implemented method for antenna fault detection and correction. The computer-implemented method includes acquiring one or more sounding reference signals (SRSs) received from at least one gNB antenna; detecting an antenna failure based on the one or more SRSs; estimating a noise power based on the antenna failure and a history of received SRSs; detecting a missing SRS based on the noise power and the history of received SRSs; and handling the missing SRS. Handling the missing SRS is based on performing at least one of: replacing an SRS measurement with a predicted SRS value for the missing SRS when the predicted SRS is available; or avoiding use of the missing SRS in a sequential SRS prediction when the predicted SRS is unavailable.
Abstract:
A method of user equipment (UE) for beam management in a wireless communication system comprises receiving, from a base station (BS), at least two groups of Tx beams comprising transmit (Tx) signals generated from different antenna panels, the at least two groups of Tx beams transmitted through reference signals; receiving, from the BS, configuration information including a selection constraint for the at least two groups of Tx beams; measuring, based on the configuration information, at least one beam from each of the at least two groups of beams; selecting at least one Tx beam from each of the at least two groups and a same Rx beam set as an Rx beam corresponding to respective selected Tx beams; and transmitting, to the BS, a reporting message including information of the selected Tx beams and the selected same Rx beam set corresponding to the Rx beam.
Abstract:
Methods and apparatuses in a wireless communication system. A method of operating a base station (BS) includes receiving a set of uplink signals; estimating, based on a subset of the set of uplink signals, uplink channels; estimating a timing offset (TO) and a frequency offset (FO) for a subset of the estimated uplink channels; compensating, based on the estimated TO and FO, the subset of the estimated uplink channels to generate TO and FO compensated uplink channel estimates; and generating channel prediction information based on the compensated subset of the estimated uplink channels.