Abstract:
A disk drive apparatus determines a pattern of bits of a data signal applied to a magnetic write transducer of a heat-assisted magnetic recording apparatus. The magnetic write transducer applies a magnetic field to a recording medium in response to the data signal. A laser power signal is applied to a laser that heats the recording medium while the magnetic field is applied. The laser power signal is modulated based on the pattern of bits. The modulation reduces differences between track widths of recorded marks having different elapsed time values and/or increases a signal-to-noise ratio of the recorded marks having different elapsed time values.
Abstract:
A method for performing a flaw scan test on a hard disk drive is disclosed. The hard disk drive includes a magnetic recording medium and spindle motor associated with a predetermined rated speed. The method includes writing a test pattern to the magnetic recording medium while operating the spindle motor at a speed greater than the predetermined rated speed. The method also includes reading the test pattern at the greater speed and detecting flaws in response to reading the test pattern.
Abstract:
First and second different write precompensation values are associated with different first and second non-return-to-zero, inverted (NRZI) data patterns. The first and second different write precompensation values cause a predetermined phase shift to be written into test data that comprises the first and second NRZI data patterns. The test data is mitten to a recording medium of a storage device using the first and second write precompensation value. The test data is used to determine a response of the storage device to the predetermined phase shift.
Abstract:
An apparatus and method provide for performing, using a heat-assisted magnetic recording head, multiple sequential writes to a recording medium, and recording a metric of write performance for each of the writes. The apparatus and method further provide for calculating fluctuations in the metric, detecting whether the head has a laser mode hopping problem using the metric fluctuations, and categorizing a severity of the laser mode hopping problem.
Abstract:
A storage device controller is configured to select one of multiple written track widths for a storage location based on a write attribute of data to be recorded at the storage location. According to one implementation, the storage device controller is further configured to select a power level for a heat-assisted magnetic recording (HAMR) device based on the write attribute.
Abstract:
A storage device includes a controller that selects an offset when preparing to write data to a target data track. The offset defines a position for a write head relative to a center of the target track and is selected based on a radial position of a write head at the target data track.
Abstract:
A storage device includes a storage medium having a first set of non-adjacent data tracks having a number of super parity sectors and a second set of non-adjacent data tracks interlaced with the first set of non-adjacent data tracks. The number of super parity sectors on a data track of the first set of non-adjacent data tracks is selected based on a distance between the data track and an inner diameter of the storage medium.
Abstract:
A storage device includes a storage controller configured to write a band of data tracks using a first recording method until criterion is met. The first method may be a conventional recording method. After the criterion is met, the storage controller is configured to write data to the band using a second recording method. The second recording method may be an enhanced capacity recording method such as interlaced magnetic recording (IMR) or shingled magnetic recording (SMR).
Abstract:
Method and apparatus for managing a data storage system that utilizes heat assisted magnetic recording (HAMR). In some embodiments, the method includes recording data to a storage medium using the HAMR system, accumulating a usage statistic indicative of actual elapsed operation of the HAMR system, and setting an indication value in a memory indicative of an estimate of remaining available elapsed operation of the HAMR system. The estimate of remaining available elapsed operation is determined in relation to the usage statistic and an estimated total elapsed operation value.
Abstract:
First and second repeatable runout (ZAP) values are both located on a first virtual track of a magnetic disk. The first ZAP value is offset from the first virtual track center in a first direction and the second ZAP value is offset from the first virtual track center in a second direction opposite the first direction. At least one of the first and second ZAP values are accessed when performing repeatable runout correction for a writer of the read/write head that is being positioned over a second virtual track of the magnetic disk.