摘要:
In a case where a second reference signal for a second communication system is transmitted in addition to a first reference signal for a first communication system, resources that affect a reception apparatus compatible only with the first communication system can be minimized, and the throughput can be prevented from being deteriorated. As resources for a reference signal CSI-RS, DVRB resources in which a resource unit defined in a frequency-time domain is divided in a time direction and distributedly allocated at predetermined frequency intervals are used and CSI-RS is allocated in a resource ID of a part of DVRB resources and transmitted when a reference signal 4RS for LTE is transmitted to a reception apparatus in addition to transmitting CSI-RS for LTE-A. The reception apparatus receives CSI-RS allocated in DVRM resources on the basis of DVRB setting information for CSI-RS, measures channel quality such as CQI, PMI or RI by using CSI-RS, and transmits and reports feedback information containing channel quality information to a transmission apparatus.
摘要:
A wireless reception device includes a resource information acquisition section that is configured to acquire silent resource setting information showing that a silent resource which indicates that no signals are allocated in a predetermined resource among distributed resources in which a resource unit defined in a frequency-time domain is divided along a time direction and distributed at a predetermined frequency interval, a receiver that is configured to receive a signal including the distributed resources in which the silent resource is allocated; and an inter-cell interference measurement section that is configured to measure an inter-cell interference pertaining to an amount of interference affected by another cell based on the silent resource setting information and by use of the silent resource allocated in the distributed resources.
摘要:
A wireless communication apparatus capable of minimizing the degradation in separation characteristic of a code multiplexed response signal. In this apparatus, a control part (209) controls both a AC sequence to be used in a primary spreading in a spreading part (214) and a Walsh sequence to be used in a secondary spreading in a spreading part (217) so as to allow a very small circular shift interval of the ZC sequence to absorb the interference components remaining in the response signal; the spreading part (214) uses the ZC sequence set by the control part (209) to primary spread the response signal; and the spreading part (217) uses the Walsh sequence set by the control part (209) to secondary spread the response signal to which PC has been added.
摘要:
A wireless communication apparatus capable of minimizing the degradation of the separation characteristic of response signals to be code-multiplexed. In the apparatus, a control part (209) controls both a ZC sequence to be used for the primary spread in a spreading part (214) and a Walsh sequence to be used for the secondary spread in a spreading part (217) according to the associations between sequences and CCEs established in accordance with the probability of using response signal physical-resources corresponding to CCE numbers. The spreading part (214) performs the primary spread of the response signal by use of the ZC sequence established by the control part (209). The spreading part (217) performs the secondary spread of the response signal, to which CP has been added, by use of the Walsh sequence established by the control part (209).
摘要:
A wireless communication apparatus capable of minimizing the degradation in separation characteristic of a code multiplexed response signal. In this apparatus, a control part (209) controls both a ZC sequence to be used in a primary spreading in a spreading part (214) and a Walsh sequence to be used in a secondary spreading in a spreading part (217) so as to allow a very small circular shift interval of the ZC sequence to absorb the interference components remaining in the response signal; the spreading part (214) uses the ZC sequence set by the control part (209) to primary spread the response signal; and the spreading part (217) uses the Walsh sequence set by the control part (209) to secondary spread the response signal to which CP has been added.
摘要:
In a case where a second reference signal for a second communication system is transmitted in addition to a first reference signal for a first communication system, resources that affect a reception apparatus compatible only with the first communication system can be minimized, and the throughput can be prevented from being deteriorated. As resources for a reference signal CSI-RS for LTE-A, last half symbols in a time direction of a resource unit RB/Sub-frame defined in a frequency-time domain are used, and the CSI-RS is allocated in a position up to the last two symbols or in the last symbol, or the like, of a particular RB/Sub-frame and transmitted when a reference signal 4RS for LTE is transmitted to a reception apparatus in addition to transmitting CSI-RS for LTE-A. The reception apparatus receives CSI-RS allocated in the last half symbol of RB/Sub-frame on the basis of CSI-RS allocation information, measures channel quality such as CQI, PMI or M by using this CSI-RS, and transmits and reports feedback information containing channel quality information to a transmission apparatus.
摘要:
A base station apparatus transmits control information to a radio communication apparatus on one or more control channel elements (CCEs) with consecutive CCE number(s) and receive a response signal from the radio communication apparatus. The response signal is spread with a sequence defined by a cyclic shift value that is determined among multiple cyclic shift values from an index of physical uplink control channel (PUCCH), which is associated with a first CCE number of aforementioned one or more CCEs, and with an orthogonal sequence that is determined among multiple orthogonal sequences from the index. One of cyclic shift values used for an orthogonal sequence is determined from an index of the PUCCH, which is associated with an odd CCE number and another one of the cyclic shift values used for the same orthogonal sequence is determined from an index of the PUCCH, which is associated with an even CCE number.
摘要:
A terminal and a communication method thereof whereby, even in a case of employing the asymmetric carrier aggregation system and further employing the MIMO transmission method for upstream channels, the error characteristic of control information can be prevented from being degraded. In the terminal (200), a transport signal forming unit (212) forms transport signals by arranging, based on a arrangement rule, ACK/NACK and CQI in a plurality of layers. According to the arrangement rule, an error detection result is arranged, on a priority basis, in a layer that is different from a layer in which the channel quality information is arranged. In this way, the puncturing of CQI using ACK/NACK can be minimized, with the result that the error characteristic of control information can be prevented from being degraded.
摘要:
A wireless communication apparatus capable of minimizing the degradation of the separation characteristic of response signals to be code-multiplexed. In the apparatus, a control part (209) controls both a ZC sequence to be used for the primary spread in a spreading part (214) and a Walsh sequence to be used for the secondary spread in a spreading part (217) according to the associations between sequences and CCEs established in accordance with the probability of using response signal physical-resources corresponding to CCE numbers. The spreading part (214) performs the primary spread of the response signal by use of the ZC sequence established by the control part (209). The spreading part (217) performs the secondary spread of the response signal, to which CP has been added, by use of the Walsh sequence established by the control part (209).
摘要:
A wireless communication apparatus capable of minimizing the degradation of the separation characteristic of response signals to be code-multiplexed. In the apparatus, a control part (209) controls both a ZC sequence to be used for the primary spread in a spreading part (214) and a Walsh sequence to be used for the secondary spread in a spreading part (217) according to the associations between sequences and CCEs established in accordance with the probability of using response signal physical-resources corresponding to CCE numbers. The spreading part (214) performs the primary spread of the response signal by use of the ZC sequence established by the control part (209). The spreading part (217) performs the secondary spread of the response signal, to which CP has been added, by use of the Walsh sequence established by the control part (209).