摘要:
A method of manufacturing a heat pipe, including the steps of: providing a hollow body with an open end and an opposite close end; filling a predetermined quantity of working fluid into the hollow body through the open end thereof after an interior of the hollow body having been evacuated to a predetermined vacuum degree; and sealing the open end of the hollow body.
摘要:
A method (100) of producing a heat pipe includes the following steps: (1) inserting a mandrel (10) into a hollow metal casing (20) with a space formed between the hollow metal casing and the mandrel; (2) filling into the space with a slurry (40) comprised of powders; (3) solidifying the slurry in the space; (4) drawing the mandrel out of the hollow metal casing after the slurry is solidified; and (5) sintering the powders contained in the slurry to form the heat pipe (60) with a sintered powder wick (61) arranged therein. In the sintering step of the method, no mandrel is required. Thus, the problem that the mandrel is difficult to be drawn out of the hollow metal casing as suffered in the conventional art is effectively solved.
摘要:
A loop-type heat exchange device (10) is disclosed, which includes an evaporator (20), a condenser (40), a vapor conduit (30) and a liquid conduit (50). The evaporator defines therein a chamber for containing a working fluid. The chamber is divided into an evaporating region and a micro-channel region. The working fluid in the evaporator evaporates into vapor after absorbing heat at the evaporating region, and the generated vapor flows, via the vapor conduit, to the condenser where the vapor releases its latent heat of evaporation and is condensed into condensate. The condensate then returns back, via the liquid conduit, to the evaporator to thereby form a heat transfer loop. The evaporator is configured in such a manner that an amount of vapor to be formed and accumulated in the micro-channel region can be minimized.
摘要:
A heat pipe includes a hollow metal casing (100) and a honeycombed wick structure (200) arranged at an inner surface of the hollow metal casing. The wick structure includes a plurality of slices (210, 220) stacked together. Each of the slices has a plurality of pores therein and a plurality of protrusions (222) formed thereon along a longitudinal direction of the heat pipe to form a plurality of liquid channels (230) in the wick structure along the longitudinal direction of the heat pipe. Each liquid channel has alternate large and small sections (232, 231) along a length thereof.
摘要:
A performance testing apparatus for a heat pipe includes an immovable portion having a first heating member located therein for heating an evaporating section of a heat pipe requiring testing. A movable portion is capable of moving relative to the immovable portion and has a second heating member located therein for heating the evaporating section of the heat pipe. A receiving structure is defined between the immovable portion and the movable portion for receiving the evaporating section of the heat pipe therein. Temperature sensors are attached to the immovable portion and the movable portion for detecting temperature of the heat pipe. An enclosure encloses the immovable portion and the movable portion therein and has sidewalls thereof slidably contacting at least one of the immovable portion and the movable portion.
摘要:
A powder feeding apparatus and a method of manufacturing a heat pipe are disclosed. The method includes: a) proving the powder feeding apparatus including a vibrating tray and a pump (800); b) positioning a tube in the vibrating tray; c) inserting a mandrel (400) into the tube from a first open end of the tube, wherein at least one groove (410) is defined in an end of the mandrel corresponding to a second open end of the tube; d) positioning a feeder (300) on the first end of the tube; e) driving the vibrating tray to vibrate and feeding powder into the tube from the feeder whilst the pump is operating to generate a forced airflow flowing from the first to the second open end of the tube. By using this method, bridging of the powder is prevented.
摘要:
A performance testing apparatus for a heat pipe includes an immovable portion having a first heating member located therein for heating an evaporating section of the heat pipe. A movable portion is capable of moving relative to the immovable portion and has a second heating member located therein for heating the evaporating section. A receiving structure is defined between the immovable portion and the movable portion for receiving the evaporating section of the heat pipe therein. A concavo-convex cooperating structure is defined in the immovable portion and the movable portion to ensure the receiving structure being capable of receiving the heat pipe precisely. Temperature sensors are attached to the immovable portion and the movable portion for detecting temperature of the heat pipe. An enclosure encloses the immovable portion and the movable portions therein.
摘要:
An integrated liquid cooling system (100) includes a heat absorbing member (10), a heat dissipating member (20) and a pump (15). The heat absorbing member defines therein a fluid flow channel (115) for passage of a coolant. The heat dissipating member is mounted to and maintained in fluid communication with the heat absorbing member. The pump is received in the heat dissipating member and is maintained in fluid communication with the heat absorbing member and the heat dissipating member. The pump is configured for driving the coolant to circulate through the heat absorbing member and the heat dissipating member. The components (i.e., the heat absorbing member, the heat dissipating member and the pump) of the liquid cooling system are combined together to form an integrated structure without utilizing any separate connecting pipes.
摘要:
A method (100) and an apparatus for manufacturing a heat-dissipation device (10) with a vacuum chamber and a working fluid therein are disclosed. The method includes the following steps: vacuuming a hollow metal casing (12) through a first open end (121) thereof until an interior of the casing reaches a predetermined vacuum degree; sealing the first open end; filling a predetermined quantity of working fluid into the casing through a second open end (123) thereof; and sealing the second open end. The apparatus includes a vacuum pump, a liquid-storage tank and a set of processing device, as used respectively for the above vacuuming, liquid-filling and sealing steps. By this apparatus, the heat-dissipation device can be manufactured at a same place without the requirement to shift the casing from one place to another place during the manufacture of the heat-dissipation device.
摘要:
An integrated liquid cooling system (100) includes a heat absorbing member (10), a heat dissipating member (20) and a pump (15). The heat absorbing member defines therein a fluid flow channel (115) for passage of a coolant and a pump receiving housing (120) adjacent to the fluid flow channel. The heat dissipating member is mounted to and maintained in fluid communication with the heat absorbing member. The pump is received in the pump receiving housing of the heat absorbing member. The pump is configured for driving the coolant to circulate through the heat absorbing member and the heat dissipating member. The heat absorbing member, the heat dissipating member and the pump of the liquid cooling system are combined together to form an integrated structure without utilizing any connecting pipes.