Abstract:
An omni-directional digital image capturing and processing system for use in a POS environment, comprising a system housing having a horizontal housing section and a vertical housing section. The horizontal housing section has a horizontal imaging window, and contains a first plurality of coplanar illumination and imaging stations, for generating and projecting a first group of coplanar illumination and imaging planes through the horizontal imaging window. The vertical housing section has a vertical imaging window, and contains a second plurality of coplanar illumination and imaging stations for generating and projecting second group of coplanar illumination and imaging planes through the vertical imaging window, which intersect and cooperate with the first complex of coplanar illumination and imaging planes within a 3D imaging volume definable relative to the horizontal and vertical imaging windows. This generates a complex of coplanar illumination and imaging planes within the 3D imaging volume, capable of omni-directional imaging of objects passing through the 3D imaging volume. Digital linear images of the object are generated as the object intersects coplanar illumination and imaging planes within the 3D imaging volume during system operation. The system also includes an object motion detection subsystem for automatically detecting the motion of objects passing through the 3D imaging volume, and generating motion data representative of the detected object motion within the 3D imaging volume.
Abstract:
A bioptical laser scanning system at a point of sale (POS) station, that generates and projects a first plurality of laser scanning planes through a horizontal-scanning window, and a second plurality of laser scanning planes through a vertical-scanning window. The first and second pluralities of laser scanning planes intersect within predetermined scan regions contained within a 3-D scanning volume defined between the horizontal-scanning and vertical-scanning windows, and generate a plurality of groups of intersecting laser scanning planes within the 3-D scanning volume. The plurality of groups of intersecting laser scanning planes form a complex omni-directional 3-D laser scanning pattern within the 3-D scanning volume capable of scanning a bar code symbol located on the surface of any object, including a six-sided rectangular box-shaped object, presented within the 3-D scanning volume at any orientation and from any direction at the POS station so as to provide six-sided 360-degree omni-directional bar code symbol scanning coverage at said POS station.
Abstract:
A bioptical holographic laser scanning system employing a plurality of laser scanning stations about a holographic scanning disc having scanning facets with high and low elevation angle characteristics, as well as positive, negative and zero skew angle characteristics which strategically cooperate with groups of beam folding mirrors having optimized surface geometry characteristics. The system has an ultra-compact construction, ideally suited for space-constrained retail scanning environments, and generate a 3-D omnidirectional laser scanning pattern between the bottom and side scanning windows during system operation. The laser scanning pattern of the present invention comprises a complex of pairs of quasi-orthogonal laser scanning planes, which include a plurality of substantially-vertical laser scanning planes for reading bar code symbols having bar code elements (i.e. ladder-type bar code symbols) that are oriented substantially horizontal with respect to the bottom scanning window, and a plurality of substantially-horizontal laser scanning planes for reading bar code symbols having bar code elements (i.e. picket-fence type bar code symbols) that are oriented substantially vertical with respect to the bottom scanning window.
Abstract:
A fully automated package identification and measuring system, in which an omni-directional holographic scanning tunnel is used to read bar codes on packages entering the tunnel, while a package dimensioning subsystem is used to capture information about the package prior to entry into the tunnel. Mathematical models are created on a real-time basis for the geometry of the package and the position of the laser scanning beam used to read the bar code symbol thereon. The mathematical models are analyzed to determine if collected and queued package identification data is spatially and/or temporally correlated with package measurement data using vector-based ray-tracing methods, homogeneous transformations, and object-oriented decision logic so as to enable simultaneous tracking of multiple packages being transported through the scanning tunnel.
Abstract:
Novel POS-based bar code symbol reading systems are disclosed having an integrated customer-kiosk terminal. Also disclosed are novel POS-Based Bar Code Reading Cash Register Systems having Integrated Internet-Enabled Customer-Kiosk Terminals.
Abstract:
Disclosed is a bioptical laser scanning system that provides 360° of omnidirectional bar code symbol scanning coverage at a point of sale (POS) station. The system generates a 3-D omnidirectional laser scanning pattern between the horizontal and vertical scanning windows during system operation. The laser scanning pattern of the present invention comprises a complex of pairs of quasi-orthogonal laser scanning planes, each composed by a plurality of substantially-vertical laser scanning planes for reading bar code symbols having bar code elements (i.e. ladder-type bar code symbols) that are oriented substantially horizontal with respect to the horizontal scanning window, and a plurality of substantially-horizontal laser scanning planes for reading bar code symbols having bar code elements (i.e. picket-fence type bar code symbols) that are oriented substantially vertical with respect to the horizontal scanning window.
Abstract:
Novel POS-based bar code symbol reading systems are disclosed having an integrated customer-kiosk terminal. Also disclosed are novel POS-Based Bar Code Reading Cash Register Systems having Integrated Internet-Enabled Customer-Kiosk Terminals.
Abstract:
A bioptical laser scanning system employing a plurality of laser scanning stations about a two independently controlled rotating polygonal mirrors. The system has an ultra-compact construction, ideally suited for space-constrained retail scanning environments, and generates a 3-D omnidirectional laser scanning pattern between the bottom and side-scanning windows during system operation. The laser scanning pattern of the present invention comprises plurality of groups of intersecting laser scanning planes that form a complex omni-directional 3-D laser scanning pattern within a 3-D scanning volume capable of scanning a bar code symbol located on the surface of an object presented within the 3-D scanning volume at any orientation and from any direction at the POS station so as to provide 360° of omnidirectional bar code symbol canning coverage at the POS station.
Abstract:
Digital image capture and processing systems and methods for generating and projecting coplanar illumination and imaging planes and/or coextensive area-type illumination and imaging zones, through one or more imaging windows, and into a 3D imaging volume in a retail POS environments, while employing automatic object motion and/or velocity detection, real-time image analysis and other techniques to capture and processing high-quality digital images of objects passing through the 3D imaging volume, and intelligently controlling and/or managing the use of visible and invisible forms of illumination, during object illumination and imaging operations, that might otherwise annoy or disturb human operators and/or customers working and/or shopping in such retail environments.
Abstract:
A POS-based digital image capturing and processing system for illuminating objects using automatic object detection and spectral-mixing illumination technique. The system comprises an area-type illumination and imaging station for projecting a coextensive area-type illumination and imaging field (i.e. zone) into a 3D imaging volume during object illumination and imaging operations. The area-type illumination and imaging station includes an illumination subsystem for producing a first field of visible illumination from an array of visible LEDs, and producing a second field of invisible illumination from an array of infrared (IR) LEDs. wherein the first and second fields of illumination spatially overlap and intermix with each other and are substantially coextensive with the FOV of the image sensing array. An automatic object motion detection subsystem automatically detects the motion of an object moving through the 3D imaging volume, while an illumination control subsystem controls the relative power ratio (VIS/IR) of visible illumination and invisible illumination during system operation so as to minimize the amount of visible illumination energy required to capture sufficiently high-contrast images of said objects and successfully process the same.