Abstract:
An optical device includes a first optical port connected to a first optical fiber, and a second optical port connected to a second optical fiber. The optical device further includes first optical components that switch first optical traffic carried via a first set of optical channels from the first optical port to the second optical port, and second optical components that switch second optical traffic carried via a second set of optical channels from the second optical port to the first optical port. The second set of optical channels includes different optical channels than the first set of optical channels. The optical device also includes a receiver that coherently detects portions of the first optical traffic and the second optical traffic, and converts the detected portions of the first and second optical traffic to electrical signals for delivery to a node or network external to the optical device.
Abstract:
Optical nodes in an optical network may provide directionless, colorless, contentionless, and gridless transmission, reception, and switching of optical signals in which a non-fixed number of optical channels and a non-fixed bandwidth for each optical channel is used. Optical nodes can use the full extent of the optical bandwidth due to the absence of channel spacing.
Abstract:
A network device includes a plurality of optical input/output (I/O) units to exchange one or more optical signals with the optical network. The network device further includes a switch fabric to process one or more optical signals exchanged with an optical network. The network device also includes a connector configured to receive a connector to couple the network device to another device. The network device also includes a base layer connecting to the plurality of optical I/O units and the switch fabric. The base layer is included in a connection that does not include a back plane and that enables communications between the plurality of I/O units, the switch fabric, and the connector.
Abstract:
A network device includes a plurality of optical input/output (I/O) units to exchange one or more optical signals with the optical network. The network device further includes a switch fabric to process one or more optical signals exchanged with an optical network. The network device also includes a connector configured to receive a connector to couple the network device to another device. The network device also includes a base layer connecting to the plurality of optical I/O units and the switch fabric. The base layer is included in a connection that does not include a back plane and that enables communications between the plurality of I/O units, the switch fabric, and the connector.
Abstract:
A network device may include a polarizing multiplexing transmitter, a polarization maintaining (PM) fiber, and a polarizing demultiplexing receiver. The polarizing multiplexing transmitter may generate an optical signal, split the optical signal into a first and a second split optical signal, and modulate the split optical signals based on electrical signals to form first and second modulated optical signals. The polarizing multiplexing transmitter may polarization multiplex the first and second modulated optical signals to form a polarization multiplexed signal and transmit the polarization multiplexed signal via the PM fiber to the polarizing demultiplexing receiver. The polarizing demultiplexing receiver may polarization demultiplex the polarization multiplexed signal to form the first and second modulated optical signals and directly detect the first and the second split optical signal from the first and second modulated optical signals. The polarizing demultiplexing receiver may convert the first and the second split optical signal to the electrical signals.
Abstract:
A device may provide, to a user device, a first message instructing a technician to move fiber cables and may receive a first signal based on the technician moving the fiber cables and a rest signal based on the technician stopping movement of the fiber cables. The device may calculate a distance, an average peak signal, and a baseline signal based on the first signal and the rest signal and may calculate a data collection window based on the distance, the average peak signal, and the baseline signal. The device may provide, to the user device, a second message instructing the technician to move one fiber cable at a time and may receive second signals based on the technician moving one fiber cable at a time. The device may provide, for display to the user device, the data collection window and indications of the second signals.
Abstract:
A device may receive, from a sensor device, cable distance data identifying cable distances along a fiber cable to vibrations experienced by the fiber cable, and may receive location data identifying locations associated with the vibrations. The device may correlate the cable distance data and the location data to generate correlated location data, and may store the correlated location data in a data structure. The device may receive, from the sensor device, data identifying a cable distance along the fiber cable to an alarm condition associated with the fiber cable, and may determine a location of the alarm condition based on the correlated location data and the data identifying the cable distance along the fiber cable to the alarm condition. The device may perform actions based on the alarm location.
Abstract:
A system includes a hybrid mobile network/television antenna and a routing device connected to the antenna. The hybrid mobile network/television antenna receives content via a broadcast television network and receives content via a mobile network. The routing device includes a first communication interface that connects to the hybrid mobile network/television antenna, and a second communication interface that connects to a user device and receives a request for content from the user device. The routing device selects a network from the broadcast television network or the mobile network. The first communication interface receives the requested content via the selected network, and the routing device forwards the requested content to the user device via the second communication interface.
Abstract:
Systems described herein provide antenna elements, each of which contains an antenna array and electronics, built into a fiber optic aerial cable to form a hybrid cable. The hybrid cable has a fiber buffer tube including one or more fiber cores, an outer sheath surrounding the fiber buffer tube, and a distributed array of antenna elements integrated along a length of the hybrid fiber optic cable. Each of the antenna elements includes an antenna and control electronics for the antenna.
Abstract:
An optical network is configured to optimize network resources. The optical network includes multiple optical nodes, light paths between the multiple optical nodes, and a network monitoring device. The network monitoring device monitors the optical network to identify a failure in the optical network. When the failure is a fiber failure, light paths are re-routed around the fiber failure while maintaining the required bandwidth for the optical network. When the failure is a transponder card failure within one of the multiple nodes, a floating spare card may be provisioned to service a particular light path associated with the transponder card failure. When the failure is a node failure, transponder cards in some of the multiple optical nodes are provisioned to reconfigure some of the plurality of light paths to route traffic around the failed node.