摘要:
Imaging optics includes a first mirror in the imaging beam path after the object field, a last mirror in the imaging beam path before the image field, and a fourth to last mirror in the imaging beam path before the image field. In an unfolded imaging beam path between the object plane and the image plane, an impingement point of the chief ray on a used region of each of the plurality of mirrors has a mirror spacing from the image plane. The mirror spacing of the first mirror is greater than the mirror spacing of the last mirror. The mirror spacing of the fourth to last mirror is greater than the mirror spacing of the first mirror. Chief rays that emanate from points of the object field that are spaced apart from another have a mutually diverging beam course, giving a negative back focus of the entrance pupil.
摘要:
Imaging optics includes a first mirror in the imaging beam path after the object field, a last mirror in the imaging beam path before the image field, and a fourth to last mirror in the imaging beam path before the image field. In an unfolded imaging beam path between the object plane and the image plane, an impingement point of the chief ray on a used region of each of the plurality of mirrors has a mirror spacing from the image plane. The mirror spacing of the first mirror is greater than the mirror spacing of the last mirror. The mirror spacing of the fourth to last mirror is greater than the mirror spacing of the first mirror. Chief rays that emanate from points of the object field that are spaced apart from another have a mutually diverging beam course, giving a negative back focus of the entrance pupil.
摘要:
An imaging optical system has a plurality of mirrors, which image an object field in an object plane into an image field in an image plane. A reflection face of at least one of the mirrors is configured as a free form face which cannot be described by a rotationally symmetrical function. The object field has an aspect ratio greater than 1. A ratio of a minimal and a maximal transverse dimension of the object field can be less than 0.9.
摘要:
An imaging optics has a plurality of mirrors which image an object field in an object plane in an image field in an image plane. A pupil plane is arranged in the imaging beam path between the object field and the image field. A stop is arranged in the pupil plane. The pupil plane is tilted at an angle (α) with respect to the object plane, where α is greater than 0.1°. The imaging optics results allows for a manageable combination of small imaging errors, manageable production and good throughput.
摘要:
In some embodiments, the disclosure provides a projection lens configured to configured to image radiation from an object plane of the projection lens to an image plane of the projection lens. The projection lens can, for example, be used in a microlithographic projection exposure apparatus. The projection lens includes a last lens on the image plane side. The last lens includes at least one intrinsically birefringent material. The material can be, for example, magnesium oxide, a garnet, lithium barium fluoride and/or a spinel. The last lens can have a thickness d which satisfies the condition 0.8*y0, max
摘要:
In some embodiments, the disclosure provides an optical system, in particular an illumination system or a projection lens of a microlithographic exposure system, having an optical system axis and at least one element group including three birefringent elements each of which includes optically uniaxial material and having an aspheric surface, wherein a first birefringent element of the group has a first orientation of its optical crystal axis, a second birefringent element of the group has a second orientation of its optical crystal axis, wherein the second orientation can be described as emerging from a rotation of the first orientation, the rotation not corresponding to a rotation around the optical system axis by an angle of 90° or an integer multiple thereof, and a third birefringent element of the group has a third orientation of its optical crystal axis, wherein the third orientation can be described as emerging from a rotation of the second orientation, the rotation not corresponding to a rotation around the optical system axis by an angle of 90° or an integer multiple thereof.
摘要:
In some embodiments, the disclosure provides an optical system, in particular an illumination system or a projection lens of a microlithographic exposure system, having an optical system axis and at least one element group including three birefringent elements each of which includes optically uniaxial material and having an aspheric surface, wherein a first birefringent element of the group has a first orientation of its optical crystal axis, a second birefringent element of the group has a second orientation of its optical crystal axis, wherein the second orientation can be described as emerging from a rotation of the first orientation, the rotation not corresponding to a rotation around the optical system axis by an angle of 90° or an integer multiple thereof, and a third birefringent element of the group has a third orientation of its optical crystal axis, wherein the third orientation can be described as emerging from a rotation of the second orientation, the rotation not corresponding to a rotation around the optical system axis by an angle of 90° or an integer multiple thereof.
摘要:
The invention features a system for microlithography that includes a mercury light source configured to emit radiation at multiple mercury emission lines, a projection objective positioned to receive radiation emitted by the mercury light source, and a stage configured to position a wafer relative to the projection objective. During operation, the projection objective directs radiation from the light source to the wafer, where the radiation at the wafer includes energy from more than one of the emission lines. Optical lens systems for use in said projection objective comprise four lens groups, each having two lenses comprising silica, the first and second lens groups on one hand and the third and fourth lens groups on the other hand are positioned symmetrically with respect to a plane perpendicular to the optical axis of said lens system.
摘要:
A catadioptric projection objective has a first objective part, defining a first part of the optical axis and imaging an object field to form a first real intermediate image. It also has a second, catadioptric objective part forming a second real intermediate image using the radiation from the first objective part. The second objective part has a concave mirror and defines a second part of the optical axis. A third objective part images the second real intermediate image into the image plane and defines a third part of the optical axis. Folding mirrors deflect the radiation from the object plane towards the concave mirror; and deflect the radiation from the concave mirror towards the image plane. The first part of the optical axis defined by the first objective part is laterally offset from and aligned parallel with the third part of the optical axis.
摘要:
A catadioptric projection lens for imaging a pattern arranged in an object plane onto an image plane, preferably while creating a real intermediate image, including a catadioptric first lens section having a concave mirror and a physical beamsplitter having a beamsplitting surface, as well as a second lens section that is preferably refractive and follows the beamsplitter, between its object plane and image plane. Positive refractive power is arranged in an optical near-field of the object plane, which is arranged at a working distance from the first optical surface of the projection lens. The beamsplitter lies in the vicinity of low marginal-ray heights, which allows configuring projection lenses that are fully corrected for longitudinal chromatic aberration, while employing small quantities of materials, particularly those materials needed for fabricating their beamsplitters.