Abstract:
In a nonvolatile memory array in which each cell (110) has two floating gates (160), for any two consecutive memory cells, one source/drain region (174) of one of the cells and one source/drain region of the other one of the cells are provided by a contiguous region of the appropriate conductivity type (e.g. N type) formed in a semiconductor substrate (120). Each such contiguous region provides source/drain regions to only two of the memory cells in that column. The bitlines (180) overlie the semiconductor substrate in which the source/drain regions are formed. The bitlines are connected to the source/drain regions.
Abstract:
In fabrication of a nonvolatile memory cell having two floating gates, one or more peripheral transistor gates are formed from the same layer (140) as the select gate. The gate dielectric (130) for these peripheral transistors and the gate dielectric (130) for the select gates are formed, simultaneously. In a nonvolatile memory having a memory cell with two floating gates, the gate dielectric (130) for the peripheral transistors and the gate dielectric (130) for the select gates (140) have the same thickness.
Abstract:
In a nonvolatile memory, one or more peripheral transistor gates are formed from the same layer (140) as the select gate. The gate dielectric (130) for these peripheral transistors and the gate dielectric (130) for the select gates are formed simultaneously. In a nonvolatile memory, the gate dielectric (130) for the peripheral transistors and the gate dielectric (130) for the select gates (140) have the same thickness. Portions of the control gates (170) overlie the select gates.
Abstract:
A silicon nitride layer (120) is formed over a semiconductor substrate (104) and patterned to define isolation trenches (130). The trenches are filled with dielectric (210). The nitride layer is removed to expose sidewalls of the trench dielectric (210). The dielectric is etched to recess the sidewalls away from the active areas (132). Then a conductive layer (410) is deposited to form floating gates for nonvolatile memory cells. The recessed portions of the dielectric sidewalls allow the floating gates to be wider at the top. The gate coupling ratio is increased as a result. Other features are also provided.
Abstract:
An optical steering method and apparatus. In one aspect of the present invention, the disclosed apparatus includes a multi-mode interference (MMI) device disposed in a semiconductor substrate. The MMI device includes an input and a plurality of outputs Each one of the plurality of outputs of the MMI device is optically coupled to the input of the MMI device. A phase array is disposed in the semiconductor substrate. The phase array includes a plurality of inputs and a plurality of outputs. The plurality of inputs of the phase array optically are coupled to the plurality of outputs of the phase array. The phase array is coupled to control relative phase differences between optical beams output by each one of the plurality of outputs of the phase array.
Abstract:
A fuel cell system comprising a closed coolant path within a fuel cell; a humidifier comprising a humidification fluid flow path and a fuel and air gas supply passage continuous in, through and out of the humidifier; the humidification fluid flow path and the fuel and air gas supply passage separated by a water permeable membrane that is impervious to organic materials allowing water from the humidification fluid flow path to enter the fuel and air gas supply passage; and the humidifier connected to the fuel cell by a humidified air and fuel passageway. The water permeable membrane can be a keggin ion pillared &agr;-ZrP composite material. The coolant can be water and organic material mixture, such as glycol, thus allowing the coolant flow in temperatures below the freezing point.
Abstract:
An approach is provided for managing processing rules used to process electronic data in computer networks. An application provides the capability for users to define and manage classifications for electronic data. The application also provides the capability for users to define and manage processing rules for each classification. This may include specifying, for each processing rule, a classification to which the processing rule corresponds, one or more conditions under which the processing rule is to be applied and optionally, not applied, a priority for the processing rule, and one or more actions to be performed. The priority may be used to determine which rule is to be applied when more than one rule corresponds to a classification. The application supports the definition and management of classifications and rules on a logical group-by-logical group basis.
Abstract:
An approach is provided for managing locked printing requests in cloud printing environments. In a cloud printing environment, a cloud printing service provider provides a platform that enables client devices to send print requests for processing by any printing device that is configured to communicate with the cloud printing service provider over a network, such as the Internet. A printing device comprises a cloud print agent that is configured to manage locked printing requests received from client devices via a cloud printing platform. The cloud print agent may be further configured to notify a user when print job data for a print job submitted by the user is approaching expiration.
Abstract:
A method and apparatus is provided for acquiring document data from additional input sources to a DSM system. In an embodiment, a DSM computing device includes a remote image receiver service configured to connect to a remote image source via a network connection, receive configuration information and image data from the remote image source, and determine post scan processing instructions based, at least in part, on the configuration information. In another embodiment, a DSM computing device includes an input selection service configured to identify one or more input sources available at the computing device, receive input source information identifying a particular input source of the one or more input sources, receive image information identifying the particular image data residing on the particular input source, retrieve the particular image data from the particular input source, and make the particular image data available to a distributed scan management service.
Abstract:
Provided is a composition that contains a mixture of broccoli seed and mustard seed. Before mixing the broccoli seed with the mustard seed, the broccoli seed is subjected to baking and a pressurized heat treatment. The broccoli seed is baked at a temperature of at least 200 degrees Fahrenheit for at least 60 minutes, and is subjected to a pressurized heat treatment of at least 200 degrees Fahrenheit at a pressure of at least 10 pounds/square inch for at least 5 minutes. Also provided is a method for therapy and/or prophylaxis of bladder cancer in an individual. The method entails administering orally to the individual a composition that contains an isothiocyanate (ITC) or a derivative thereof such that the administration inhibits the growth and/or recurrence of bladder cancer. Nutraceutical compositions are also provided.