Abstract:
An apparatus for assisting a rescuer in performing chest compressions during CPR on a victim, the apparatus comprising a pad or other structure configured to be applied to the chest near or at the location at which the rescuer applies force to produce the chest compressions, at least one sensor connected to the pad, the sensor being configured to sense movement of the chest or force applied to the chest, processing circuitry for processing the output of the sensor to determine whether the rescuer is substantially releasing the chest following chest compressions, and at least one prompting element connected to the processing circuitry for providing the rescuer with information as to whether the chest is being substantially released following chest compressions.
Abstract:
An example of a system for assisting a rescuer in providing CPR includes a motion sensor configured to generate signals indicative of chest motion during CPR chest compressions, and a defibrillator including a display screen configured to provide CPR feedback and defibrillation information and a processor configured to receive the signals, generate a compression waveform based on the signals, detect, in the compression waveform, features characteristic of chest compressions, compare the detected features to a predetermined criterion that distinguishes between manually delivered and compressions delivered by an automated compression device, and selectively provide the CPR feedback based on whether the compressions are the manually delivered or the automated compressions, where the selective provision of the CPR feedback includes displaying CPR parameters for the manually delivered compressions, and a removing from the display screen at least one CPR parameter of the CPR parameters for the automated compressions.
Abstract:
A system for assisting a rescuer in providing resuscitative treatment to a victim is described. The system includes a motion sensor configured to generate motion sensor signals that are indicative of motion of the chest of the victim during chest compressions, an input device configured to receive user input indicative of a type of chest compressions, an output device, and a processor, a memory, and associated circuitry, the processor communicatively coupled to the motion sensor, the input device, and the output device and is configured to receive the motion sensor signals and the user input indicative of the type of chest compressions, determine chest compression feedback for the rescuer based on the motion sensor signals, and control the output device to selectively provide the chest compression feedback for the rescuer based at least in part on the type of chest compressions indicated by the user input.
Abstract:
Systems and methods related to the field of cardiac resuscitation, and in particular to devices for assisting rescuers in performing cardio-pulmonary resuscitation (CPR).
Abstract:
An example of a system for assisting a rescuer in providing CPR includes a motion sensor configured to generate signals indicative of chest motion during CPR chest compressions, and a defibrillator including a display screen configured to provide CPR feedback and defibrillation information and a processor configured to receive the signals, generate a compression waveform based on the signals, detect, in the compression waveform, features characteristic of chest compressions, compare the detected features to a predetermined criterion that distinguishes between manually delivered and compressions delivered by an automated compression device, and selectively provide the CPR feedback based on whether the compressions are the manually delivered or the automated compressions, where the selective provision of the CPR feedback includes displaying CPR parameters for the manually delivered compressions, and a removing from the display screen at least one CPR parameter of the CPR parameters for the automated compressions.
Abstract:
Systems and methods related to the field of cardiac resuscitation, and in particular to devices for assisting rescuers in performing cardio-pulmonary resuscitation (CPR).
Abstract:
A defibrillator for guiding a rescuer based on a probability of defibrillation success includes at least one output device and a processor and associated memory, the processor being configured to receive at least two ECG signals over time for a cardiac arrest victim, the at least two ECG signals including at least a first ECG signal at a first point in time and a second ECG signal at a second point in time, process the at least two ECG signals to determine at least two parameters related to the at least two ECG signals, the at least two parameters forming a sequence of parameter sets, analyze a trajectory of the sequence of parameter sets, determine the probability of defibrillation success based on the analysis of the trajectory, and control the at least one output device to provide one or more caregiver prompts based on the probability of defibrillation success.
Abstract:
A system for assisting a rescuer in providing resuscitative treatment to a victim is described. An example of the system includes a processor configured to detect compression waveform features characteristic of manual chest compressions, automated chest compressions, and mechanically assisted active compression-decompression (ACD) chest compressions, an output device communicatively coupled to the processor, and a motion sensor, communicatively coupled to the processor and configured to generate signals indicative of motion of the victim's chest during chest compressions. The processor is further configured to receive the signals indicative of the motion of the chest, generate a compression waveform based on these signals, identify the compression waveform as one of a manual, an automated, and a mechanically assisted ACD chest compression waveform based on compression waveform features in the compression waveform, and control the output device to selectively provide chest compression feedback to the rescuer based on the identified compression waveform.
Abstract:
In one example, an external medical device is provided. The external medical device includes a memory, at least one sensor to detect a cardiac condition in a patient monitored by the external medical device, and circuitry, in communication with the memory, to receive information indicative of the cardiac condition, detect whether the patient is asleep, and issue at least one alarm responsive to both receiving the information and detecting that the patient is asleep.
Abstract:
A method of analyzing a physiological (e.g., an ECG) signal during application of chest compressions. The method includes acquiring a physiological signal during application of chest compressions; acquiring the output of a sensor from which information on the velocity of chest compressions can be determined; and using the information on the velocity to reduce at least one signal artifact in the physiological signal resulting from the chest compressions.