Abstract:
Techniques are provided herein for receiving at a video processing device color video frames comprising grayscale components and color components. The grayscale components corresponding to each of the color video frames are extracted as each of the color video frames is received to obtain grayscale video frames. The grayscale video frames are transmitted at a first transmission rate. Color components for selected color video frames are periodically fused with selected grayscale video frames to obtain fused color video frames, and the fused color video frames are transmitted at a second transmission rate interspersed with the grayscale video frames transmitted at the first transmission rate.
Abstract:
A radio frequency (RF) switch includes a common port, a first port, and a second port, a first semiconductor switching element disposed in a first RF pathway between the common port and the first port, a second semiconductor switching element disposed in a second RF pathway between the common port and the second port, a first pair of direct current (DC) blocking capacitors disposed to isolate the first semiconductor switching element in the first RF pathway, and a second pair of DC blocking capacitors disposed to isolate the second semiconductor switching element in the second RF pathway. The respective pairs of DC blocking capacitors allow for different bias voltages to be applied to the respective RF pathways. A charge-discharge circuit may also be employed to decrease transient switching time of the RF switch.
Abstract:
A radio frequency (RF) switch including a common port, a first port, a second port, a first RF pathway extending between the common port and the first port, a second RF pathway extending between the common port and the second port, a first shunt path extending between the first RF pathway and ground, a second shunt path extending between the second RF pathway and ground, and a respective semiconductor switching element disposed in each of the first RF pathway, the second RF pathway, the first shunt path and the second shunt path configured to control whether the given RF pathway or shunt path is enabled or disabled at a given time, wherein a selected combination of conductivity types and control signals for the respective semiconductor switching elements are employed.
Abstract:
A double pole double throw switch device is provided. The device includes a first path circuit, a second path circuit, a third path circuit and a fourth path circuit. The first terminals of the first and second path circuits are coupled to a first port, and the second terminals of the first and second path circuits are respectively coupled to a third port and a fourth port. The first terminals of the third and fourth path circuits are coupled to a fourth port, and the second terminals of the third and fourth path circuits are respectively coupled to the second port and the third port. Each path circuit includes a switch module and a functional switch circuit. When a switch module is turned on, its corresponding functional switch circuit is turned off, and when the switch module is turned off, its corresponding functional switch circuit is turned on.
Abstract:
An antenna module in provided. The antenna module includes a metal housing, a radiator and a feed conductor. The metal housing includes a housing surface and a through hole. The radiator surrounds the metal housing. The feed conductor connects the radiator to an inner circuit inside the metal housing via the through hole.
Abstract:
A receiver receiving a Radio Frequency (RF) signal and generating a baseband signal is provided. An RF module receives the RF signal and down convert the RF signal according to a first oscillation frequency to generate an Intermediate Frequency (IF) signal. An IF module is coupled to the RF module and arranged to receive the IF signal and down convert the IF signal according to a second oscillation frequency to generate the baseband signal. A calibration module is coupled to the RF module and arranged to calculate the IF signal according to a third oscillation frequency to detect an I/Q mismatch, and generate an adjustment signal, accordingly, to calibrate the I/O mismatch.
Abstract:
A voltage regulator includes an amplifier, a power device, a delay signal generator, and a voltage-generating circuit. The amplifier generates a control signal according to a reference voltage and a feedback voltage. The power switch generates the output voltage by regulating the output current according to the switch control signal. The delay signal generator generates a plurality of sequential delay signals each having distinct delay time with respect to an externally applied power-on burst signal. The voltage-generating circuit provides an equivalent resistance for generating the feedback voltage corresponding to the output voltage, and regulates the output voltage by adjusting the equivalent resistance according to the plurality of sequential delay signals.
Abstract:
A double pole double throw switch device is provided. The device includes a first path circuit, a second path circuit, a third path circuit and a fourth path circuit. The first terminals of the first and second path circuits are coupled to a first port, and the second terminals of the first and second path circuits are respectively coupled to a third port and a fourth port. The first terminals of the third and fourth path circuits are coupled to a fourth port, and the second terminals of the third and fourth path circuits are respectively coupled to the second port and the third port. Each path circuit includes a switch module and a functional switch circuit. When a switch module is turned on, its corresponding functional switch circuit is turned off, and when the switch module is turned off, its corresponding functional switch circuit is turned on.
Abstract:
A method of fabricating a microelectromechanical system (MEMS) device includes providing a semiconductor substrate having a semiconductor layer and an interconnect structure. A passivation layer and a photoresist layer are formed over the interconnect structure and a plurality of openings are formed in the photoresist layer to expose portions of the passivation layer. The passivation layer exposed by the openings and the interconnect structure thereunder are removed, forming a plurality of first trenches. The semiconductor layer exposed by the first trenches is removed, forming a plurality of second trenches in the semiconductor layer. An upper capping substrate is provided over the passivation layer, forming a first composite substrate. The semiconductor layer in the first composite substrate is thinned and portions of the thinned semiconductor layer are etched to form a third trench, wherein a suspended micromachined structure is formed in a region between the first, second and third trenches.
Abstract:
A frequency modulation receiver is provided. The frequency modulation receiver includes an automatic frequency controller and a signal detector. The automatic frequency controller receives a demodulated frequency modulation signal demodulated from a radio frequency signal and outputs a control voltage to control an oscillation frequency of a local oscillator. The signal detector coupled to the automatic frequency controller receives the control voltage and determines whether the radio frequency signal is a frequency modulation signal according to the control voltage and a predetermined voltage range.