Abstract:
A tubular composite container includes a paperboard body ply wrapped into a tubular shape, and a polymer film liner ply wrapped into a tubular shape and adhered to the inner surface of the body ply. The liner ply has a circumferential length when unwrapped and flat that is less than that of the body ply so that the liner ply is substantially uncompressed circumferentially. A strip of polymer film liner material is wrapped onto a mandrel and overlapping edge portions of the liner strip are heat sealed together by first preheating the liner strip to a temperature below the sealing temperature of the heat seal material on the edge portions of the liner strip, and then further heating the overlap region of the liner strip to at least the sealing temperature to cause heat sealing of the edge portions. A paperboard strip is coated on an inner surface with adhesive and is then wrapped about the liner and adhered thereto. The outer surface of the liner strip is surface treated by corona discharge or flame treatment prior to being wrapped on the mandrel to improve adhesion to the paperboard, and the liner strip tension is maintained less than about 1 pound per inch of width to prevent liner stretching as the liner strip is advanced to and wrapped about the mandrel. The preheating of the liner strip is performed by a heated section of the mandrel over which the liner strip passes. The overlap region is locally heated by an infrared heater.
Abstract:
A fillet for a composite panel may be formed by pulling a prepreg slit tape from a spool and winding the slit tape into a fillet mold around the perimeter of a wheel. The tension, heat, and speed may all be adjusted during the winding process. A guide may guide the slit tape to specific locations in the fillet mold. The fillet may be removed from the wheel and coupled to the composite panel and cured.
Abstract:
A fiber reinforced polymer matrix composite structure includes a glass fiber layer and a carbon fiber layer in a cured resin. The glass fiber layer and the carbon fiber layer are laminated and present in a thickness direction of the structure. Two outermost layers of the fiber reinforced polymer matrix composite structure including the glass fiber layer and the carbon fiber layer are both the glass fiber layer. In the structure, a volume fraction of carbon fibers with respect to a total volume of glass fibers and carbon fibers is 0.67 or more.
Abstract:
A device for holding a fiber texture on an impregnation mandrel of a winding machine, the device including a cross-member forming a support having each of its ends for fastening on one of cheekplates of the mandrel, a central pad carrier mounted on the cross-member and including a pad for pressing against a fiber texture layer wound on the mandrel, two lateral pad carriers mounted on the cross-member and each including a main pad for pressing against the fiber texture layer wound on the mandrel and a lateral pad for pressing against a lateral margin of the fiber texture layer wound on the mandrel, and a mechanism exerting a clamping force urging the pads against the fiber texture layer wound on the mandrel.
Abstract:
With regard to a filament winding device in which a plurality of fiber bundles are simultaneously wound around a liner, a tension detecting portion and a tension adjusting portion are miniaturized, the cost of the tension detecting portion and the tension adjusting portion is reduced, and the tension detecting portion and the tension adjusting portion are easily arranged. Provided is a filament winding device 100 that includes a tension adjusting portion 110 that collectively adjusts tension of a plurality of fiber bundles F unreeled from a plurality of bobbins B and an unreeling failure detecting portion 130 that individually detects the unreeling failure of the fiber bundles F on the bobbins B for each bobbin B.
Abstract:
A winding machine for winding a fiber texture onto an impregnation mandrel, includes: a take-up mandrel for storing and unwinding a fiber texture, the take-up mandrel having a substantially horizontal axis of rotation; an impregnation mandrel for receiving superposed layers of the fiber texture unwound from the take-up mandrel, the impregnation mandrel having an axis of rotation that is substantially horizontal and parallel to the axis of rotation of the take-up mandrel; a camera directed towards the fiber texture and the impregnation mandrel to examine the passage of warp tracer yarns and weft tracer yarns present in the fiber texture; an image-analysis module for determining the positions of the intersections of warp tracer yarns with the successive weft tracer yarns and comparing these determined positions with corresponding positions for the intersections of reference warp and weft tracer yarns, and determining an offset value for the fiber texture for each of these intersections; electric motors for driving the mandrels in rotation about their respective axes of rotation; and a control unit for controlling the electric motors for driving rotation of the mandrels.
Abstract:
A device for holding a fiber texture on an impregnation mandrel of a winding machine, the device including a cross-member forming a support having each of its ends for fastening on one of cheekplates of the mandrel, a central pad carrier mounted on the cross-member and including a pad for pressing against a fiber texture layer wound on the mandrel, two lateral pad carriers mounted on the cross-member and each including a main pad for pressing against the fiber texture layer wound on the mandrel and a lateral pad for pressing against a lateral margin of the fiber texture layer wound on the mandrel, and a mechanism exerting a clamping force urging the pads against the fiber texture layer wound on the mandrel.
Abstract:
A method for manufacturing a flexible tubular underwater pipe (10): A leakproof tubular structure (12, 14, 16) is covered with at least one layer (18, 20) of armor wires. At least one continuous longitudinal element made of a deformable material is wound in a helix with short pitch around the layer (18, 20) of armor wires to form a holding layer 24. The at least one longitudinal element is wound under longitudinal tension T0 so as to stretch its deformable material according to a relative elongation corresponding to a tensile stress σ0 less than the elastic limit value σE of the deformable material, and the elastic limit value σE corresponds to a tensile stress beyond which the deformation of the material is irreversible.
Abstract:
An apparatus for manufacturing a wound dressing is provided. The apparatus includes a base, a slot, a tension compensator and a take-up device. The slot has two ends and is disposed on the base. The tension compensator is slidably connected to the slot and operable to connect to at least one fiber. The take-up device includes a shaft and a board. The shaft rotates upon being driven, in which the shaft is aligned with a level between the two ends of the slot. The board is secured on the shaft for winding the fiber connected to the tension compensator.
Abstract:
A fixed angle centrifuge rotor is provided. The rotor includes a rotor body having a circumferential sidewall and a plurality of tubular cavities. Each of the cavities has an open end and a closed end and is configured to receive a sample container therein. A pressure plate is operatively coupled to the plurality of tubular cavities so that the pressure plate, in combination with the plurality of tubular cavities, defines an enclosed hollow chamber between each adjacent pair of the plurality of tubular cavities. Each of the plurality of tubular cavities has a sidewall facing an interior of the rotor body and a bottom wall at the closed end.