摘要:
The invention relates, according to a first aspect, to a process for the heat treatment of a cylinder head-type casting made from an aluminum alloy, in particular an alloy of aluminum, of silicon and of magnesium, and where appropriate of copper, comprising the steps of: —solution annealing (L) of the part for a time between three and ten hours; —quenching (S) of the part in air or in a fluidized bed; —tempering (H) of the part at the peak of resistance, or in the vicinity of the peak of resistance to attain a level of resistance of the part at least equal to 85% of the maximum level of resistance at the tempering temperature in question. According to a second aspect, the invention relates to the castings obtained at the end of the process according to the invention, and which have an improved fatigue resistance.
摘要:
This invention provides an aluminum alloy material capable of being thermally bonded in a single layer without using a bonding agent, such as a brazing or welding filler metal. This invention also provides a bonding method for the aluminum alloy material, and an aluminum bonded body using the aluminum alloy material. The aluminum alloy material is made of an aluminum alloy containing Si: 1.0 to 5.0 mass % and Fe: 0.01 to 2.0 mass % with the balance Al and inevitable impurities. The aluminum alloy material contains 10 to 1×104 pieces/μm3 of Al-based intermetallic compounds having equivalent circle diameters of 0.01 to 0.5 μm and 200 pieces/mm2 or less of Si-based intermetallic compounds having equivalent circle diameters of 5.0 to 10 μm.
摘要翻译:本发明提供一种铝合金材料,其能够在不使用诸如钎焊或焊接填充金属的粘合剂的情况下以单层热结合。 本发明还提供一种铝合金材料的接合方法和使用该铝合金材料的铝粘合体。 该铝合金材料由含有Si:1.0〜5.0质量%,Fe:0.01〜2.0质量%的铝合金构成,余量为Al和不可避免的杂质。 铝合金材料含有10〜1×104个/μm3的当量圆直径为0.01〜0.5μm的Al系金属间化合物和200个/ mm 2以下的具有当量圆直径为5.0〜10μm的Si系金属间化合物 。
摘要:
A method for manufacturing an aluminum wire is provided. The aluminum wire includes an inner-layer conductor having one or a plurality of inner-layer alloy wires including aluminum and an outer-layer conductor having a plurality of outer-layer alloy wires including aluminum and provided on the inner-layer conductor. The method includes an outer-layer twisting step of twisting, over the inner-layer conductor, the outer-layer alloy wires provided on the inner-layer conductor, and an outer-layer rotational compression step of compressing the outer-layer alloy wires twisted in the outer-layer twisting step while being rotated in the same direction as the direction of the twisting in the outer-layer twisting step.
摘要:
A method for producing an aluminum-alloy shaped product, includes a step of forging a continuously cast rod of aluminum alloy serving as a forging material, in which the aluminum alloy contains Si in an amount of 10.5 to 13.5 mass %, Fe in an amount of 0.15 to 0.65 mass %, Cu in an amount of 2.5 to 5.5 mass % and Mg in an amount of 0.3 to 1.5 mass %, and heat treatment and heating steps including a step of subjecting the forging material to pre-heat treatment, a step of heating the forging material during a course of forging of the forging material and a step of subjecting a shaped product to post-heat treatment, the pre-heat treatment including treatment of maintaining the forging material at a temperature of −10 to 480° C. for two to six hours.
摘要:
A rolled aluminum alloy material is provided with excellent strength and press workability and with which a poor and patchy appearance is less likely to occur after the alumite treatment. The rolled aluminum alloy material can be utilized for components of a bicycle crank. The rolled aluminum alloy material has a component composition comprising 0.6-1.4 wt % of Mg, 0.3-1.0 wt % of Si, 0.1-0.5 wt % of Cu, 0.02-0.4 wt % of Cr, and 0.1-0.6 wt % of Mn, and Al and inevitable impurities as the remainder.
摘要:
As a small-diameter conductor for electric wires for automobiles, provided is an aluminum alloy wire satisfying all requests of sufficient strength, elongation and electroconductivity. The wire is an aluminum alloy wire including: magnesium; silicon; and aluminum and inevitable impurities as the balance, the content (M) by atomic percentage (at %) of the magnesium in the wire and the content (S) by atomic percentage (at %) of the silicon satisfying the following expressions (1) and (2), a metallic microstructure of a cross section of the wire having an average crystal grain size of 3 to 20 μm, a precipitation size of the metallic microstructure in the cross section being 100 nm or less, and the number density of the precipitations in the cross section being one or more per square micrometer. [Formula 1] 0.2≦M≦1.19 (1), and −0.81M+1.44≦S≦−1.54M+2.31 (2).
摘要:
An object of the present invention is to provide an aluminum alloy foil for electrode current collectors having superior rolling properties, high conductivity, and high strength after the drying step following the application of the active material. According to the present invention, an aluminum alloy foil for electrode current collector, including 0.03 to 0.1% of Fe, 0.005 to 0.02% of Ti, 0 to 0.1% of Si, 0 to 0.01% of Cu, 99.85% or more of Al, with the rest being unavoidable impurities, wherein tensile strength of the aluminum alloy foil is 175 MPa or higher, and electrical conductivity of the aluminum alloy foil is 60% IACS or higher, is provided.
摘要:
An aluminum alloy casting material for heat conducting is provided, wherein the thermal conductivity is improved of an aluminum alloy casting material whereof the castability is improved by the addition of silicon where said invention is characterized by being an aluminum alloy casting material with excellent thermal conductivity, comprising 5-10.0% by mass of silicon, 0.1-0.5% by mass of magnesium and the remainder comprising aluminum and inevitable impurities, and whereon aging treatment has been performed.
摘要:
An aluminum alloy clad material for forming includes: an aluminum alloy core material containing Mg: 3.0 to 10% (mass %, the same hereinafter), and the remainder being Al and inevitable impurities; an aluminum alloy surface material which is cladded on one side or both sides of the core material, the thickness of the clad for one side being 3 to 30% of the total sheet thickness, and which has a composition including Mg: 0.4 to 5.0%, and the remainder being Al and inevitable impurities; and an aluminum alloy insert material which is interposed between the core material and the surface material, and has a solidus temperature of 580° C. or lower.