Abstract:
A torque converter having an internal lock-up clutch which is activated by the elastic expansion or ballooning of the torque converter housing. This ballooning occurs due to the increased internal fluid pressure within the torque converter.
Abstract:
A torque transfer device for transferring torque between a drive unit and a shaft that is rotatable around an axis of rotation, in particular a transmission input shaft, having a hydrodynamic torque converter, which comprises a converter cover that is connectable to or connected to the drive unit, which converter cover may be coupled via an impeller to a turbine wheel to transfer torque, which turbine wheel is bridgeable, to transfer torque, by a torque converter lockup clutch, which includes a piston that is movable to a limited extent in the axial direction and is constructed as a multi-plate clutch with a plate pack that includes outer plates which are connected to an outer plate carrier in a rotationally fixed connection, and inner plates which are connected to an inner plate carrier in a rotationally fixed connection.
Abstract:
In one embodiment, a torque converter is provided with a fluid coupling and a viscous coupling. The viscous coupling includes a plurality of closely-spaced surfaces, wherein facing ones of the closely-spaced surfaces are alternately splined to rotate with driving or driven elements of the torque converter, and wherein the closely-spaced surfaces have an average spacing that causes ones of the surfaces rotating with the driving elements to exert a viscous pull on ones of the surfaces rotating with the driven elements when the torque converter is filled with a viscous fluid. A fluid receiving portion of the torque converter receives a viscous fluid into the torque converter, and a fluid return portion expels the viscous fluid from the torque converter. The fluid receiving and fluid return portions are positioned to define a fluid pumping path through the torque converter, wherein the fluid pumping path traverses paths between the closely-spaced surfaces of the viscous coupling, and wherein the fluid pumping path increases a shear force of the viscous fluid as the viscous fluid is pumped between the closely-spaced surfaces of the viscous coupling.
Abstract:
A force transmission device including an input and an output, a hydrodynamic component, having at least one pump shell and one turbine shell, and a device for damping vibrations including a primary component and a secondary component, rotatable relative to each other in circumferential direction, wherein the secondary component is connected at least indirectly torque proof with the output, and the turbine shell is connected at least indirectly torque proof with the output.The connection between the turbine shell and the output, or an element coupled torque proof with the output, is performed through the intermediary element connected with the turbine shell in a first coupling section and coupled in a second coupling section with the output, or with the element coupled torque proof with the output, wherein the intermediary element is characterized by a substantially constant wall thickness, and the two coupling areas are disposed offset relative to each other in axial and in radial direction.
Abstract:
A hydrodynamic clutch device used to establish and to release a working connection between a drive and a takeoff is disclosed. The device includes a housing capable of rotating around an axis of rotation, the housing containing a torus space, which forms a torus volume (TV) with a pump wheel and a turbine wheel, and a clutch space, which forms the boundaries of the clutch volume (CV) and which encloses a mechanical transmission circuit including a bridging clutch designed with a torsional vibration damper During the course of the minimum resting phase of the housing, the fluid which is distributed throughout the housing during the operating state decreases from a total volume comprising at least the torus volume (TV) and the clutch volume (CV) to a resting volume (RV), which is located at least essentially underneath the axis of rotation as a result of the force of gravity. A volume reduction arrangement is provided to the housing to reduce the clutch volume (CV) versus the resting volume (RV).
Abstract:
A torque converter comprising a torque converter clutch arranged to transmit torque from a housing of the torque converter to a turbine, a piston plate fixed to a drive hub, a clutch plate fixed to a turbine hub, the turbine hub operatively arranged to rotate at transmission input shaft speed, a pressure chamber bounded by a cover and a clutch piston plate, and a flow chamber, the flow chamber bounded by the piston plate and the clutch plate. A method of converting torque in a motor vehicle comprising the steps of driving a torque converter housing via an engine, transferring fluid to a turbine within the torque converter, rotating a transmission input shaft via the turbine fluid transfer, transferring engine torque via a mechanical lock-up mechanism, controlling lock-up mechanism fluid flow via a flow chamber, and releasing flow chamber fluid via an orifice.
Abstract:
A torsional vibration damper for a lockup clutch of a hydrodynamic clutch arrangement is provided with a drive-side transmission element and a driven-side transmission element which can deflect around a rotational angle relative to each other against the action of energy accumulators. The transmission elements have recesses for receiving an energy accumulator, respectively, which can be supported by its respective end coils at respective circumferential ends of the recess. The circumferential ends of every recess are oriented, respectively, substantially along a first connection line to a first center of curvature. However, the circumferential end coils of every energy accumulator are oriented substantially along a second connection line to a second center of curvature in the absence of a relative rotational deflection of the transmission elements. The second connection line is oriented at an initial set angle relative to the first connection line. At the start of a relative rotational deflection of the transmission elements until reaching a predetermined limiting relative rotational deflection, a change in the set angle between the second connection line and the first connection line to a final set angle is initiated at the respective end coil of every energy accumulator. The end coils of every energy accumulator undergo at least substantially no further change in the final set angle when a relative rotational deflection exceeds the predetermined limiting relative rotational deflection.
Abstract:
The present invention provides a wet-type multi-plate clutch subjected to slip control, wherein a first friction material including rich diatom earth at its friction surface acting during the slip control and a second friction material acting at completion of engagement and having great static coefficient of friction are stuck on the same surface of a friction plate of the wet-type multi-plate clutch and wherein the first friction material has an axial thickness greater than that of the second friction material.
Abstract:
The present invention broadly comprises a cone connection assembly for a torque converter, including: a first surface operatively arranged for connection to a crankshaft and a second surface on a cover of the torque converter. The first and second surfaces are arranged to be engaged and the first surface is arranged to transfer torque to the second surface via the engagement of the first and second surfaces. In some aspects, the crankshaft comprises a longitudinal axis, the first surface is disposed about the longitudinal axis, the cover comprises an outside surface, and the outside surface comprises the second surface. In some aspects, the first and second surfaces are arranged to be frictionally engaged or the first and second surfaces have complementary surface features and the first and second surface features are arranged to interlockingly engage.
Abstract:
In a lockup device, a drive plate has a frictional coupling portion adjacent to a friction surface, and can provide torque to a turbine. The piston is a disk-like member arranged between a front cover and the turbine, has a pressing portion arranged on a side of the frictional coupling portion remote from a friction surface, and is axially movable according to a change in hydraulic pressure. The piston coupling mechanism unrotatably and axially movably couples the piston to the front cover. A seal mechanism seals a portion radially inside the piston at its axially opposite sides. The damper mechanism is arranged in a space axially between the front cover and the turbine, and is located radially between a drive plate and a seal mechanism. The piston coupling mechanism is arranged radially inside the seal mechanism.