Abstract:
A pressure sensor includes a sensor body which has a first surface and a cavity with an opening in the first surface, a cantilever which has a base end portion supported on the first surface and a distal end portion provided to form a gap from a peripheral edge of the opening inside the opening, is flexurally deformed according to a pressure difference between an inside and an outside of the cavity, and is formed of a semiconductor material, and a displacement measurement unit which measures a displacement of the cantilever vibrating according to the pressure difference at a frequency larger than a lower limit frequency fLOW (Hz) defined by Expression (1), where a width (μm) of the gap is represented by G, a volume (ml) of the cavity is represented by V, and a proportional constant is represented by k. fLOW=k·(G2/V) (1)
Abstract:
An object of this invention is to detect an external force or acceleration with good sensitivity using a simple configuration. An external force detection sensor comprises a comb electrode including a fixed electrode having a plurality of fixed combtooth portions and a movable electrode having a plurality of movable combtooth portions inserted between the fixed combtooth portions; a power supply connected to the fixed electrode and the movable electrode in order to cause vibration of the movable electrode at a prescribed resonance frequency through an electrostatic force on the fixed electrode; and detection means for detecting an external force based on a change in electrical characteristics between the fixed electrode and the movable electrode when the movable electrode is caused to vibrate. With respect to the fixed combtooth portions that are adjacent to each other and the movable combtooth portion inserted therebetween, the spacing between one of the fixed combtooth portions and the movable combtooth portion is different from the spacing between another of the fixed combtooth portions and the movable combtooth portion.
Abstract:
A housing cladding module for a medical device is provided for collision identification. The module includes resistor elements, which are arranged in and/or on the surface and which are designed such that the resistor elements change their electrical resistance on expansion. The resistor elements are arranged in such a way that the resistor elements are expanded in the event of a collision with an object. The collision is identified easily, and the effective collision force may be ascertained.
Abstract:
A sensor includes a flexible wafer substrate and an oscillator provided on a principal surface of the wafer substrate, and the oscillator deforms when an external force is applied to the wafer substrate.
Abstract:
A method of analyzing an engine for misfire activity includes receiving an electrical signal associated with a plurality of cycles of the engine, identifying energy spikes in the electrical signal associated with cylinder firings in the engine, generating engine speed estimates based on spacing between the energy spikes, and analyzing anomalies in the engine speed estimates to identify misfire activity in the engine. Also described is a method of analyzing an engine for misfire activity including receiving an electrical signal associated with the engine, detecting AC ripple in the electrical signal, generating engine speed estimates in response to the detected AC ripple, and analyzing anomalies in the engine speed estimates to identify misfire activity in the engine.
Abstract:
The invention relates to a sensor (2) for measuring mechanical stress acting thereon. The invention is characterized in that the sensor has an oscillating, magnetorestrictive resonator plate (3) and the stress to be measured acts on the resonator plate (3) indirectly by way of a variable magnetic field. The variable magnetic field is preferably created by way of a bias plate (5) made of magnetorestrictive material, or at least one permanent magnet (15) as a result of the mechanical stresses acting thereon by the body (7) to be measured.
Abstract:
An electromechanical force transducer comprises at least two adjacent resonant elements and a damping layer coupled between their adjacent faces. The damping layer is selected so that the output is increased in the region of internal cancellation in the transducer. The adjacent resonant elements are beam-like and have substantially the same length. The resonant elements may be supported on a stub of low rotational stiffness whereby the fundamental resonance of the transducer becomes less dependent on bending motion of the transducer and more rigid body-like. The transducer may also include a member for increasing the rotational impedance of the transducer.
Abstract:
There are provided a highly sensitive force/mass detection method and device using a phase-locked loop, in which a phase noise of the mechanical element can be reduced using the phase-locked loop, by synchronizing a vibration signal of a mechanical element to an oscillation signal from a local oscillator which has a low phase noise and a high purity property. In the highly sensitive force/mass detection device using the phase-locked loop, an oscillation circuit of a mechanical vibrator 1 including a phase adjuster 10, a binarization circuit 5 for detecting a phase of an oscillation signal of the oscillation circuit, a local oscillator 7 having a low phase noise and a high purity property, a phase comparator 6 for comparing the phase of the oscillation signal of the mechanical vibrator 1 with a phase of an oscillation signal from the local oscillator 7, and a loop filter 8 connected to the phase comparator 7, are provided. An output of the phase comparator 6 is fed back to the phase adjuster 10 through the loop filter 8, and a phase noise of the mechanical vibrator 1 is reduced.
Abstract:
A high frequency flexure-based dynamometer (10) for measuring vibrations to use in determining cutting forces in a tool. The dynamometer device (10) may operate within a preselected high frequency range while measuring cutting forces less than about 1 N. The dynamometer (10) may include two coupled flexures that interact to produce vibration modes at the edge of a selected bandwidth of interest. These modes may produce a frequency response function within the desired frequency band that has a magnified response and is substantially constant. The dynamometer (10) may include a workpiece (38) mounted to one of the two flexures (12) and a one or more precision accelerometers (30) mounted to the first or second flexures. Finite element analysis may be used to optimize the flexure design.
Abstract:
An electromechanical force transducer comprising a plurality of resonant elements, a low stiffness member coupled between the adjacent faces of at least two adjacent resonant elements, and a stub member on which the resonant elements are supported and for coupling the transducer to a site to which force is to be applied. An electromechanical force transducer comprising a plate-like resonant element having a frequency distribution of modes in the operative frequency range of the transducer, and a stub member for coupling the transducer to a site to which force is to be applied and on which the resonant element is supported and arranged such that whole body non-bending modes are introduced into the resonant element. An electromechanical force transducer comprising a resonant element; a coupling member on the resonant element for mounting the transducer to a site to which vibration force is to be applied or taken; the transducer further comprising a member for increasing the rotational impedance presented to the coupling member adjacent said site.