Abstract:
Disclosed is a multiple longitudinal flow cell channel electromagnetic radiation absorption or fluorescence monitoring system wherein a source of electromagnetic radiation is positioned to input electromagnetic radiation to each of the longitudinal flow cell channels, and wherein a single low cost, low drift, preferably linear and sensitized to UV, array detector system is positioned to directly simultaneously monitor electromagnetic radiation from at least two of the longitudinal flow cell channels, at different locations thereupon.
Abstract:
Disclosed is a multiple longitudinal flow cell channel electromagnetic radiation absorption or fluorescence monitoring system wherein a source of electromagnetic radiation is positioned to input electromagnetic radiation to each of the longitudinal flow cell channels, and wherein a single low cost, low drift, preferably linear and sensitized to UV, array detector system is positioned to directly simultaneously monitor electromagnetic radiation from at least two of the longitudinal flow cell channels, at different locations thereupon.
Abstract:
A method of analyzing fluid samples using a bent capillary flow cell, in which method an external UV/visible light ray beam is directed into an elongated section of the flow cell from a bend thereof, this incident light ray beam is limited to a solid acceptance angle .OMEGA.. This solid acceptance angle .OMEGA. is determined such that light rays which enter the elongated section traverse predominantly the longitudinal axis thereof, i.e. propagate through the fluid sample, providing an improved S/N ratio. Lens means, such as ball lenses, may be used at the entrance and exit side of the elongated section. A bent capillary flow cell is provided, in which the elongated section deviates by an angle .psi. from a line N perpendicular to a flat side face of a holding template.