Abstract:
A method and apparatus for improving the accuracy of fuel flow meters by compensating for the presence of vapor bubbles generated within the flow meter. The method comprises measuring the temperature of the fuel flowing through the meter and using an algorithm or static lookup table to determine a vapor compensation factor based on that temperature. Because the tendency of fuel to vaporize depends largely on seasonal variations in fuel temperature, applying a temperature-dependent vapor compensation factor promotes year-round accuracy of the flow meter output.
Abstract:
An ultrasonic flowmeter includes a conduit for receiving a flow of a fluid and a flexible printed circuit board (FPC) including: a pair of ultrasonic transducers, wherein each transducer comprises a piezoelectric element divided into a plurality of segment electrodes and the FPC is bonded around the conduit; and a control circuit configured to sequentially activate the segment electrodes using a pulse train to cause at least one of the piezoelectric elements to emit a sonic signal. A delay time between activation of each successive segment electrode controls a phase velocity and an angle of emission of the corresponding sonic signal.
Abstract:
A method for determining system accuracy is provided. The method includes the steps of inputting hardware specifications related to a supply flowmeter into a computing device and inputting hardware specifications related to a return flowmeter into the computing device. Additionally, the method includes inputting system parameters into the computing device. System accuracy is calculated with system logic, wherein the system logic receives the inputs based on hardware specifications related to the supply flowmeter, the hardware specifications related to the return flowmeter, and the system parameters. The calculated system accuracy is stored in a computer-readable storage media, and the calculated system accuracy is output.
Abstract:
Two-wire transmitters are described in which the required voltage that a control room must supply to the transmitter is lower at high current than at low current, thus freeing up more voltage for other uses, and in which a constant set of operating voltages may be maintained. A corrected pressure in a vortex flow meter may be determined that reflects the mass flow rate. Thus, the mass flow rate may be determined based on the corrected pressure reading and a measured volumetric flow rate. Density may be determined from pressure and temperature using a table containing error values based on a standard density determination and a relatively simple approximation. During operation of a flow meter, the stored error values may be linearly interpolated and the approximation may be computed to determine the density from the stored error value.
Abstract:
A small and light-weight flowmeter realizes the compensation of a zero point drift. A mass flowmeter includes: a centrifugal force/centripetal force detection strain gauge adhered to a part acted upon by a centrifugal force or a centripetal force of fluid in a pipe line in which the fluid flows and a flow rate zero point drift compensation strain gauge adhered to a position different from that of the centrifugal force/centripetal force detection strain gauge. A pulse wave propagation time between the two points is used to compensate a zero point drift of a flow rate.
Abstract:
transducer apparatus comprises a transducer housing, a tube, a temperature sensor as well as a temperature sensor. The tube is arranged within a cavity of the transducer housing, in such a manner that an intermediate space is formed between a wall of the transducer housing facing the cavity inner surface and an outer surface of a wall of the tube facing the cavity. Furthermore, the tube is adapted to guide a fluid in its lumen, in such a manner that an inner surface of the wall of the tube facing the lumen is contacted by fluid guided in the lumen. Each of the temperature sensors is formed by means of a temperature detector arranged within the intermediate space as well as by means of a coupling body coupling the respective temperature detector thermally conductively with the wall of the tube and is additionally adapted to register a particular measurement location temperature, and to transduce such into a corresponding temperature measurement signal, namely an electrical measurement signal representing the particular measurement location temperature.
Abstract:
A method for compensating for changes in a property of water in a multiphase fluid during analysis of the multiphase fluid is provided. In one embodiment, the method includes providing a multiphase flow meter system configured to emit and detect nuclear radiation, to emit and detect microwave radiation, and to analyze a received multiphase fluid. The method can also include measuring a temperature and a microwave complex permittivity of the multiphase fluid. Further, the method includes compensating for changes in the property of water in the multiphase fluid during analysis of the multiphase fluid by using an empirical transformation between the fluid temperatures, microwave complex permittivities and nuclear mass attenuation coefficients for mixtures of different waters expected to be produced and received by the multiphase flow meter system. Additional systems, devices, and methods are also disclosed.
Abstract:
A cleansing system for improving operation of a plant. A server is coupled to the cleansing system for communicating with the plant via a communication network. A computer system has a web-based platform for receiving and sending plant data related to the operation of the plant over the network. A display device interactively displays the plant data. A data cleansing unit is configured for performing an enhanced data cleansing process for allowing an early detection and diagnosis of the operation of the plant based on at least one environmental factor. The data cleansing unit calculates and evaluates an offset amount representing a difference between a measurement and a simulation for detecting an error of measurement during the operation of the plant based on the plant data.
Abstract:
A multiple temperature sensor system (120) includes a temperature sensor network (180) including temperature-sensing resistors RT1 and RT2 (186, 187) and frequency-selective filters (184, 185) coupled to the plurality of temperature-sensing resistors RT1 and RT2 (186, 187). The frequency-selective filters (184, 185) pass distinct time-varying signals into the temperature sensor network (180) and pass attenuated distinct time-varying signals out. The system (120) further includes a temperature measurement N controller (161) coupled to the temperature sensor network (180) and configured to inject the distinct time-varying signals into the temperature sensor network (180), receive the attenuated distinct time-varying signals in response to the injection, with the attenuated distinct time-varying signals being attenuated by the temperature sensing resistors (186, 187), and generate two or more substantially simultaneous temperature values from the attenuated distinct time-varying signals.
Abstract:
A system and method for improved flow measurements for LCG, such as liquid petroleum gas (LPG), is disclosed. Embodiments of the present technology detect the presence of a vapor in a fluid flowing in a mass flow meter. A control valve is then adjusted to provide enough back pressure to prevent the measured liquid from flashing and to reduce the presence of vapor in the fluid flowing in the mass flow meter. By keeping the fluid in liquid form, the present technology reduces the vapor flowing in the mass flow meter, increasing the accuracy of mass flow and other measurements. Utilizing a similar principle of vapor detection, embodiments of the present technology provide for improved average parameter value calculation, such as average density calculations and equivalent liquid volume calculations.