Abstract:
A starting apparatus for a high-pressure discharge lamp provided with an auxiliary starting electrode, has a series resonant circuit for the purpose of generating the starting voltage for the high-pressure discharge lamp. The resonant inductance of the series resonant circuit includes the primary winding of a transformer, whose secondary winding is provided for the purpose of applying the starting voltage to the auxiliary starting electrode (Z) of the high-pressure discharge lamp. The invention also relates to a high-pressure discharge lamp, in particular to a vehicle headlight lamp, having such a starting apparatus arranged in the lamp base.
Abstract:
A method of operating cold cathode in discharge lamps, including discharge lamps operating with a dielectrically hindered discharge that include two electroconducive electrodes facing each other between which a ferro-electric material is sandwiched. At least one of the electrodes presents one or more openings. When the cathode is operating, a voltage of quickly alternating polarity is applied to both electrodes, thereby freeing electrons on the surface of the ferro-electric material. The working voltage of the discharge lamp causes an acceleration of said electrons, which pass through the openings towards the anode and are used for igniting the discharge lamp and keeping it in an operating mode.
Abstract:
A cold-cathode, plasma discharge modulator switch is disclosed. A crossed-field discharge plasma supplied charge carriers for the switch. A dc magnetic field is employed to provide a highly localized cusp magnetic field near the cathode, so that gas ionization occurs primarily in the cathode-source grid gap. The region between the cathode and anode is filled with a relatively low pressure gas. A highly transparent control grid with small apertures is closely spaced from the anode. The switch is closed through application of positive potential (relative to the plasma) to the control grid, and opened through application of negative potential relative to the plasma to the control grid. The application of negative potential to the control grid creates an ion sheath around the control grid which permits plasma cut-off to the anode region provided the sheath size is larger than the control grid aperture radius. Upon plasma cut-off, the switch current is interrupted as the remaining plasma in the control grid-anode gap decays. Low pressure operation insures that ionization cannot sustain the plasma in the narrow, isolated control grid-anode gap.
Abstract:
An extra-high pressure mercury discharge lamp comprising an end-sealed glass tube shaped to provide a long arc type tube, mercury contained in the both ends respectively of the glass tube, a pair of electrodes provided in the both ends respectively of the glass tube, each of the electrodes including one end portion extending toward the exterior from the associated end of the glass tube, an intermediate portion immersed in the mercury, and the other end portion extending toward the interior beyond the surface of the mercury facing toward the middle of the glass tube, and a power source connected between the externally extending portions of the electrode pair to supply power thereacross, the other or internally extending portions of the electrode pair having a length so selected that the mercury discharge lamp emits light of a sharp emission profile suitable for the exposure of a very fine pattern.
Abstract:
A directly heated type oxide cathode comprising a base made of an alloy containing Ni as a major component and Zr as a reducing agent, a coating of Co powders or a mixture of Ni powders and Co powders wherein the average particle size of the Co powders is smaller than that of Ni powders formed on the base, and an electron emissive alkaline earth oxide layer formed on the coating of Co powders or the mixture of Ni powders and Co powders does not show deformation of the base or peeling of the oxide layer during the production procedure or operation of electron tubes and the like.
Abstract:
An electric discharge tube in which an electric luminous discharge is to be produced for display purposes has internal electrodes connected to a generator providing an alternating voltage of cyclically varying magnitude. At least one external electrode extending lengthwise of the tube is connected to one generator terminal by way of a reactance, preferably a capacitor. The external electrodes may be wire or thin metal strip and are preferably adhesively secured to the tube envelope. A plurality of such tubes may be connected in series to a single voltage generator.
Abstract:
There is disclosed a gas discharge device gas mixture consisting essentially of about 20 to 35 percent atoms of argon and about 80 to 65 percent atoms of a xenon-based composition. The mixture is especially beneficial for use in a color phosphor gas discharge display/memory device because the mixture substantially lowers peak gas discharge currents while providing phosphor stimulation. The xenon-based composition consists essentially of about 95 to 100 percent atoms of xenon and about 5 to 0 percent atoms of another component, particularly one or more selected from neon, krypton, nitrogen, helium, and mercury.
Abstract:
A high-pressure discharge lamp lighting device is used for projector devices that allow controlling the mean electric power at a desired value with a slow processing speed. A color wheel rotates and disperses the beam from lamp into each of the color components, such that the electric power supplied to the lamp is controlled at different levels for each segment of the color wheel and the power feeding device control part finds the mean electric power by sampling the electric power supplied.
Abstract:
A discharge lamp lighting device includes a lamp current control portion that generates, in synchronization with an input video signal, a control signal for controlling polarity reversal of an AC current with a steady-state lighting frequency and an AC current with a low frequency, and a lamp driving portion that drives the discharge lamp based on the control signal that is output by the lamp current control portion. The lamp current control portion generates a control signal for a brightness reduction waveform with timing corresponding to polarity reversal of the AC current with the steady-state lighting frequency, and the lamp driving portion inserts a current reduction waveform into the AC current with the low frequency by decreasing a voltage applied to the discharge lamp based on the control signal for the brightness reduction waveform. It is possible to reduce flicker that could be perceived due to insertion of a period without a reduction of the projection light amount (a period without a polarity reversal at the low frequency) during repeated reductions of the projection light amount occurring at intervals of polarity reversal of the steady-state lighting frequency.