Abstract:
The invention is directed to a co-gasification process that uses biomass and VGO as a feedstock to produce syngas which includes a mixture of carbon monoxide and hydrogen.
Abstract:
Embodiments described herein generally relate to iron carbonate utilized as a catalyst in coal gasification processes. An FeCO3 catalyst is active in both pyrolysis and gasification operations, and may increase carbon conversion rate and reduce the activation energy of coal gasification. Methods described herein also include suitable processing conditions for performing coal gasification with the FeCO3 catalyst.
Abstract:
The present invention relates to a gasification process and system, wherein a dryer integrated with a water-gas-shift catalyst is disposed in front of a gasifier.
Abstract:
The present disclosure provides methods and devices for preparing the fuel gas used. A device may include a furnace body, a tower type synchronous roller extruding machine with a circular ladder groove mold that is mounted at the upper end of the furnace body. The tower type synchronous roller extruding machine is provided with a bucket, the bucket is in airtight connection with the furnace body, and a first transmission shaft is mounted in the bucket. At least two tower type synchronous rollers are mounted on the first transmission shaft, and the tower type synchronous rollers are symmetrically distributed on both sides of the first transmission shaft.
Abstract:
A continuous converter for pyrolysing or otherwise processing biomass or other solid organic feed materials includes a reaction chamber (5) for producing a solid carbon-containing product and a gas product and optionally a liquid water product via pyrolysis or other reaction mechanisms from a solid organic feed material. The chamber has an inlet (41) for supplying a solid organic feed material to the chamber and separate outlets (15, 35) for the solid carbon-containing product and the gas product produced in the reaction chamber. The inlet and the solid carbon-containing product outlet are configured so that the solid materials in the inlet and in the outlet form respective gas seals in the inlet and the outlet.
Abstract:
A system for converting fuel is provided and includes a first reactor comprising a plurality of ceramic composite particles, the ceramic composite particles comprising at least one metal oxide disposed on a support, wherein the first reactor is configured to reduce the at least one metal oxide with a fuel to produce a reduced metal or a reduced metal oxide; a second reactor configured to oxidize at least a portion of the reduced metal or reduced metal oxide from the said first reactor to produce a metal oxide intermediate; a source of air; and a third reactor communicating with said source of air and configured to regenerate the at least one metal oxide from the remaining portion of the solids discharged from the said first reactor and the solids discharged from the said second reactor by oxidizing the metal oxide intermediate.
Abstract:
A process for gasifying a carbonaceous particulate feedstock includes dividing the carbonaceous particulate feedstock into at least two feedstock fractions, each feedstock fraction including particulate material within a predetermined particle size range so that there are at least a smaller particle size feedstock and a larger particle size feedstock. The smaller particle size feedstock is fed to at least one gasifier and the larger particle size feedstock is fed to at least one other gasifier.
Abstract:
Methods and systems for processing animal waste are disclosed. Effluent, including waste solids and water, is received. The effluent is at least partly separated into solids and water. The separated water is processed using a dissolved air flotation device and/or a reverse osmosis system to clarify the separated water. The separated solids are transferred to a gasifier, which processed the separated solids to form a least a first gas.
Abstract:
A system for reducing volatile organic compounds, particulates and carbon monoxide in exhaust from a wood products dryer is disclosed. The dryer exhaust is combined with waste wood or biomass fuel and partially combusted in a rotary gasifier, then fully combusted in a secondary combustion chamber. Hot flue gasses form the secondary combustion chamber are used to heat the conduits carrying the exhaust from the dryer, to heat oil, and to preheat air input to the dryer.