摘要:
Pre-ground plastics of small particle size not more than 2 mm are co-fed into a solid fossil fuel fed entrained flow partial oxidation gasifier. High solids concentrations in the feedstock stream can be obtained without significant impact on the feedstock stream stability and pumpability. A consistent quality of syngas can be continuously produced, including generation of carbon dioxide and a carbon monoxide/hydrogen ratio while stably operating the gasifier and avoiding the high tar generation of fluidized bed or fixed bed waste gasifiers and without impacting the operations of the gasifier. The subsequent syngas produced from this material can be used to produce a wide range of chemicals.
摘要:
Pre-ground plastics of small particle size not more than 2 mm are co-fed into a solid fossil fuel fed entrained flow partial oxidation gasifier. High solids concentrations in the feedstock stream can be obtained without significant impact on the feedstock stream stability and pumpability. A consistent quality of syngas can be continuously produced, including generation of carbon dioxide and a carbon monoxide/hydrogen ratio while stably operating the gasifier and avoiding the high tar generation of fluidized bed or fixed bed waste gasifiers and without impacting the operations of the gasifier. The subsequent syngas produced from this material can be used to produce a wide range of chemicals.
摘要:
A system configured for the production of at least one product selected from the group consisting of syngas, Fischer-Tropsch synthesis products, power, and chemicals, the system comprising a dual fluidized bed gasification apparatus and at least one apparatus selected from power production apparatus configured to produce power from the gasification product gas, partial oxidation reactors configured for oxidation of at least a portion of the product gas, tar removal apparatus configured to reduce the amount of tar in the product gas, Fischer-Tropsch synthesis apparatus configured to produce Fischer-Tropsch synthesis products from at least a portion of the product gas, chemical production apparatus configured for the production of at least one non-Fischer-Tropsch product from at least a portion of the product gas, and dual fluidized bed gasification units configured to alter the composition of the product gas. Methods of operating the system are also provided.
摘要:
A system configured for the production of at least one product selected from the group consisting of syngas, Fischer-Tropsch synthesis products, power, and chemicals, the system comprising a dual fluidized bed gasification apparatus and at least one apparatus selected from power production apparatus configured to produce power from the gasification product gas, partial oxidation reactors configured for oxidation of at least a portion of the product gas, tar removal apparatus configured to reduce the amount of tar in the product gas, Fischer-Tropsch synthesis apparatus configured to produce Fischer-Tropsch synthesis products from at least a portion of the product gas, chemical production apparatus configured for the production of at least one non-Fischer-Tropsch product from at least a portion of the product gas, and dual fluidized bed gasification units configured to alter the composition of the product gas. Methods of operating the system are also provided.
摘要:
A device for converting biomass with a water content of at least 50% to gaseous products includes a reactor filled at least partially with a packing including at least one filler body for accommodating supercritical water and a hydrothermal molten salt. A heater is arranged to heat up the reactor and its content. A first feeding pipe is coupled to the reactor to feed water and salt solution into the reactor. A second feeding pipe is coupled to the reactor to feed to biomass into the reactor. A discharge pipe is coupled to the reactor to discharge gaseous products from the reactor. An outlet is proved in the bottom of the reactor for removing portions of the molten salt.
摘要:
A process for the gasification of wet biomass comprises feeding the wet biomass at a temperature of at most 370 C. and a pressure of at least 22.1 MPa (absolute) to a reactor. The reactor comprises a bed of solid particles suspended in a fluid. The temperature of the feed is increased in the presence of the bed of suspended solid particles to a temperature of at least 375° C., forming supercritical water and converting in the presence of the supercritical water at least a portion of the organic materials present in the wet biomass into fluid gasification product.
摘要:
Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.
摘要:
Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.
摘要:
A fluidized bed biogasifier is provided for gasifying biosolids. The biogasifier includes a reactor vessel and a feeder for feeding biosolids into the reactor vessel at a desired feed rate during steady-state operation of the biogasifier. A fluidized bed in the base of the reactor vessel has a cross-sectional area that is proportional to at least the fuel feed rate such that the superficial velocity of gas is in the range of 0.1 m/s (0.33 ft/s) to 3 m/s (9.84 ft/s). In a method for gasifying biosolids, biosolids are fed into a fluidized bed reactor. Oxidant gases are applied to the fluidized bed reactor to produce a superficial velocity of producer gas in the range of 0.1 m/s (0.33 ft/s) to 3 m/s (9.84 ft/s). The biosolids are heated inside the fluidized bed reactor to a temperature range between 900° F. (482.2° C.) and 1700° F. (926.7° C.) in an oxygen-starved environment having a sub-stoichiometric oxygen level, whereby the biosolids are gasified.