Abstract:
The present invention provides a damping mechanism capable of varying the moving speed of an openable door or the like in stages as necessary. Such damping mechanism includes a damping body (1) installed with a damper mechanism and allowing a rotative shaft (3) to protrude therefrom; a plurality of pinions (4, 5) provided on the rotative shaft (3) and each having a different diameter from one another; and a rack member (2) including a plurality of racks (7, 8) respectively engaging with the pinions (4, 5).
Abstract:
A damper device includes a casing, a rotor partly housed in the casing, a viscous fluid filled in the casing around the rotor, and a torque generator for generating a torque during a rotating stroke of the rotor. The torque generator includes a fluid torque adjuster for producing a relatively large torque in at least a terminal range of the rotating strokes in normal and reverse directions of the rotor.
Abstract:
In order to provide a container 1 having a door 2, in particular a luggage compartment for aircraft, the door 2 being mounted via at least one hinge or the like on the container 1 such that it can pivot, having an apparatus for assisting the movement of the door 2 into the open position and for holding the door 2 in the open position, and having an apparatus for holding the door 2 in the closed position, in the case of which container the structural components have as small a physical size as possible and thus occupy as little volume in the container 1 as possible. It is provided that the apparatus for assisting the movement of the door 2 and, possibly, an apparatus for damping the movement of the door 2 are arranged essentially around the pivoting axis of the door 2. The components relating to this are ideally integrated in the or each hinge. The damping of the movement of the door 2 advantageously reduces as the opening angle .alpha. of the door 2 increases or as the rate at which the door 2 is opened reduces.
Abstract:
A rotary damper with a housing, with a rotor rotatably mounted in a closed chamber of the housing and with a viscous medium disposed within the chamber, wherein the rotor is so formed and so cooperates with the wall of the chamber that with a relative rotation of the housing and the rotor, a braking effect is produced by the medium, and wherein at least two rotor elements are provided which are arranged coaxially, preferably commonly in the chamber, and the neighboring rotor elements are coupled such that they are freely rotatable relative to one another over a limited rotational angle.
Abstract:
A door closing device including closing means for urging a door between said first open position and second closed position having a cable mounted in a housing said cable wound about periphery of a reel regulating the speed of movement of said door between the open position and closed position; a reservoir for containing viscous fluid; and a buffer for retarding the speed of movement of said door comprising an impeller immersed in the viscous fluid for use as a brake; whereby the impeller reduces rotational speed of said reel, thus reducing closing speed of said door.
Abstract:
An over-the-top type cabinet door prop unit is characterized in that it comprises a fitting case to be rigidly fitted to the inner surface of one of the lateral walls of the cabinet, a movable spring holder vertically movable relative to the fitting case containing it and urged downward by compression springs, a link arm pivotably linked at the upper end to the movable spring holder by a pivot pin and a swing arm swingable around an arm spindle located in a lower portion of the fitting case and having a base section arranged around the arm spindle and linked to the lower end of said link arm by a link pin and an arm section extending from the base section and pivotably linked at the distal end thereof by an anchor pin to an anchor pin bearing secured to the over-the-top type cabinet door and that the pivot where the link arm and the base section of the swing arm is linked by the link pin is located closer to the cabinet door relative to the vertical axial line connecting the pivot pin and the arm spindle when the over-the-top type cabinet door is closed and moved onto the vertical axial line in the initial stages of the opening motion of the cabinet door and then further away from the cabinet door relative to the vertical axial line in the subsequent stages of the opening motion of the cabinet door until the cabinet door is placed on the top wall of the cabinet.
Abstract:
An upright piano has a fall board for covering a keyboard, and a damper assembly is provided between a side arm and the fall board; the damper assembly includes a rotary damper generating large damping force during a turning motion in the counter clock wise direction and small damping force during the opposite turning motion and a link mechanism connected between the fall board and a shaft member of the rotary damper for changing the turning motion on the way between the closed position and the open position of the fall board; and a player is not expected to strongly support the fall board so as to prevent the fall board and the piano case from violent collision therebetween.
Abstract:
A damper assembly is provided between a side arm of an upright piano and a fall board for preventing the fall board from violent collision with a key slip, the damper assembly includes a rotary damper embedded into the fall board and producing small damping force during a rotation of the fall board from the closed position and a vertical position and large damping force during a rotation of the fall board from the vertical position to the closed position, a turnable plate member turnably connected to the side arm and not allowing the shaft member to turn with respect thereto, a stopper held in contact with the turnable plate member between the vertical position and the closed position and a spring generating resilient force larger than the small damping force and smaller than the large damping force so as to allow the turnable plate member to turn together with the rotary damper between the vertical position and an open position, and the damper assembly allows a player to move the fall board without large force.
Abstract:
A time delay release mechanism has a brake actuator including an actuation member movable between engaged and released positions. The actuation member, when in the engaged position, operatively engages a fire barrier for preventing closure thereof. The actuation member, when in the released position, is operatively disengaged from the fire barrier such that the release mechanism does not prevent closure thereof. The brake actuator includes an actuation driver which, when receiving electrical power, moves the actuation member to the released position. A timer, when receiving electrical power or when power thereto is interrupted for a duration less than a predetermined time period, disengages from the actuation member allowing the actuation driver, when power thereto is initially interrupted, to move the actuation member to the engaged position. The timer engages the actuation member, when power to the timer is interrupted for a duration greater than the predetermined time period, to move the actuation member to the released position thereby overriding the actuation driver to allow closure of the fire barrier. The timer disengages from the actuation member when power to the timer is restored and the actuation driver retains the actuation member in the released position when power to the actuation driver is restored, thereby automatically resetting the brake actuator and timer.
Abstract:
A rotation retarder has a startor (1), a rotor (3) designed to receive the rotational movement to be retarded, and an elastic component (10) disposed between the rotor and the stator (2) the stator (2) having a seat (4) from which projects a shaft (6) with an overall cylindrical wall, and the rotor (3) having a housing (13) with an overall cylindrical wall for rotational mounting on the shaft (6). The retarder (1) is characterized in that the elastic component (10) is in direct contact with the wall of the shaft (6) and the wall of the housing (13) between which it is compressed, the area of contact between the first one of these walls and the elastic component (10) being larger than the area of contact between the second one of these walls and the elastic component (10), whereby the elastic component (10) is held on the first wall while the second wall is able to slide with respect to the elastic component (10).